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Preface

This report is the outcome of the master thesis project of Brian Johnsen and
Morten Lykkegaard Kristiansen. It has been developed from May 2006 to
April 2007. This report also marks the end of our educations as Master of
Science in respectively Applied Mathematics and Software Production, and
Computer Science and Mathematics.

Where to Find the Goodies

All produced source code, tests, documentation, and this writing, are avail-
able on the enclosed CD-ROM. It is furthermore available on the web on the
project homepage:

http://www.deepthought.dk/sidious

Conventions

The project concerns itself primarily with software development. As such, it
contains terminology specific to that area, requiring the reader to have some
insight in software development and technologies.

The typographic conventions are:
italic font Indicates terms that are being defined, are borrowed

from the JavaTMlanguage, or are well-known software
terms.

courier font Computer stuff (Java class names and keywords, file-
names, commands, and so on).

Note that all code excerpts throughout the thesis have had comments,
logging statements, and the like omitted to enhance readability.
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To give the project an identity, a kind of brand, the project was named
Sidious. Henceforth, the project will occasionally be referred to by its given
name.
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Abstract

How can the environment in a greenhouse be controlled automatically and
autonomously? Does this control problem have anything in common with
how an enemy agent in a computer game attempts to defeat the player?
This project tries to solve the climate control problem by applying game
inspired artificial intelligence.

Multiple AI technologies were evaluated, all benchmarked against the
climate control problem. This evaluation culminated in a rule based planner
as the candidate technology. This candidate was designed, implemented, and
tested, and is the outcome of this thesis.

While neither of the authors are experts in climate control, it was nec-
essary during development, to maintain a high degree of flexibility of the
system. This flexibility led to the realization that the solution constituted
a framework that, besides the climate control problem, prospectively could
solve planning and control problems in general.

Since this project was equally a software development task, flexibility
was also maintained during implementation through agile principles. This
included fully automating every possible aspect of the project development.

The developed solution proves that the rule based planner was sensible,
and combined with prudent expert knowledge is fully capable of field duty.
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Chapter 1

Introduction

Two, seemingly unrelated, worlds, the world of computer games and the
world of climate control are attempted merged; taking Artificial Intelligence
or AI from games and applying it to climate control. This will involve the
development of a framework to handle the greenhouse climate control prob-
lem.

It must be noted that most climate control components explained later
in this thesis are on a proof of concept basis only. The authors of this thesis
are not domain experts in the field of plant growth. This must however not
detract from the quality of the results found in this thesis, as the problems are
not the exact science of plant growth, but rather the problems and conflicts
that arise when growing plants.

1.1 The Problem Domain

When growing plants on a large scale many considerations come into play.
Primarily, the grower has to have some idea about what the current state of
the environment is. He gets this information from sensors placed in strategic
places around the greenhouse. Examples of such sensors are thermometers,
hygrometers, and irradiance sensors. All the sensors contribute to the foun-
dation for the grower to make his decisions. The grower then uses his expert
knowledge to make a decision about whether or not to change the state of
the environment.

1



2 CHAPTER 1. INTRODUCTION

1.1.1 Setpoints

The change in the environment is done through adjusting some setpoints.
Setpoints are values of specific system settings like temperature (day and
night), soil temperature etc. The setpoint adjustments usually have a direct
result like rising the temperature in the greenhouse, but in most cases, they
also have one or more indirect results; adjusting the temperature results in
adjustment of the relative humidity. The problem with these indirect results
is that they are not always predictable for a human; for instance, it is hard
for a human, on the fly, to calculate the resulting photosynthesis rate when
adjusting some setpoint. Besides these short term direct and indirect results
the adjustments also have an impact on the production as a whole. This is
one aspect where the grower must rely upon experience to make the right
decisions. The production as a whole does not involve many adjustments
of the setpoints because this would require the grower to make constant
adjustments. This could also, without decision support from a seasoned
expert or an expert system, lead to unforeseen and fatal consequences for
the production line. This rigid type of climate control also results in a high
energy consumption.

1.1.2 IntelliGrow

A research project where the goal was to reduce the energy and pesticide us-
age in plant production was begun October 1. 1999. This team developed an
application called IntelliGrow [1] which would be part of the climate control
system in greenhouses. One of the major differences from how it was before
was the introduction of biological setpoints. The biological setpoints differed
from ordinary setpoints in that they ensured that plant specific or indirect
values where kept constant like the rate of photosynthesis and not tempera-
ture and other environmental directly measurable values. Their grand vision
was being able to steer plant growth down to flowering time, height, etc.

The way these biological setpoints were reached was by dynamically ad-
justing the ”old” setpoint values. For instance the photosynthesis rate is
dependent on light, CO2 level and more. All setpoint values where deter-
mined by the IntelliGrow application. These modules that control different
aspects of plant growth are called components. Some of the components also
dealt with costs and pesticide use. What the team found was that some times
the wishes of these components conflicted. This would mean that they had
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to run the setpoints and environment data though the system multiple times.
This poses a problem because it is impossible to determine the amount of
runs it would take to find equilibrium.

When looking at what the IntelliGrow application can do, it is justified
to call it, albeit simple, but Artificial Intelligence. IntelliGrow is actually
a simple single-pass expert system. Although the application was simple
it achieved some great results in energy use reduction which lead to the
idea that it was good course to pursue. It functioned almost like a proof of
concept.

Knowing the basics of the IntelliGrow system, the mission objectives of
this thesis can be stated.

1.1.3 Mission Objectives

Given a greenhouse with environment sensors that read temperature, humid-
ity levels, etc. and setpoints to adjust temperature level CO2 level etc. The
application developed in this thesis must make use of the following things
from IntelliGrow:

• Use dynamical setpoint adjustment to maintain biological setpoints.

• Use models developed to calculate the wanted environmental state.

• Making the system as flexible as possible to maintain several plant
species.

Besides using the things discovered when developing IntelliGrow it was
also imperative to get rid of as many shortcomings of IntelliGrow as possible.
Some of these are:

• Calculating the new setpoint values by taking all the components into
consideration.

• Make conflicting (read expense generating) setpoint adjustments only
happen as a last resort.

• Make the system adhere to a master plan or strategy.

In other words, the mission objective of this thesis was to use the discov-
eries made of the IntelliGrow team, and develop a decision support system
that eliminated the major flaws of that system.
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Besides attempting to solve the greenhouse control problem, this thesis is
also about developing software, and learning the ”craft”. Therefore, different
strategies was tried out, and adapted into the development. In any case, the
mantra of the development was how to do ”the right thing, the first time”.

As the sub-title of the thesis indicates, the angle of approach for solving
the greenhouse control problem was to investigate if artificial intelligence of
computer games could be applied. The next couple of lines give the rationale
for thinking it could.

1.2 Growing Plants vs. Computer Games

How could growing plants and computer games have anything in common?
Well, to answer that question let us first look at a specific genre of games,
the Role Playing game.

1.2.1 Role Playing Plant

In the role-playing game, the whole purpose is to develop your character.
This character development is done by a series of choices and this ultimately
defines whether the players character wins or loses. In some games, the
progress you made through the game is even rated such that you can compare
individual characters on how well they fared and fought in the game world.
This kind is well represented by a game like Diablo. [2]

To apply this pattern of thinking to growing plants, consider a person
growing a houseplant. The choices made by the person (or player) have a
very big impact on the life of the plant. Even down to whether it wins, the
plant flourishes, or loses, the plant withers. The actions of the person can
even be rated by subjectively scoring the plant on looks etc.

1.2.2 Real-time Strategy for Plants

When growing plants on a larger scale in a greenhouse it can be considered
as an army of characters just like in a real-time strategy game (RTS). A real
time strategy game is a game where armies are pitted against each other and
the player controls the actions of each character. A well known example of
this kind of game is Command & Conquer.[3]
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In the greengouse the grower (or player) governs the plants (or charac-
ters). The grower has to devise a strategy for how he wishes to grow these
plants e.g. the lowest possible energy consumption, the best looking plants,
fastest growth etc. It could even be a hybrid of these. In the RTS a player,
as well as computer controlled opponent, must also devise a master plan.
This plan could be that it must focus on building defenses, tank rushing, up-
grading etc. The master plan or strategy must then be divided into several
smaller bits. For the grower this is decisions like whether or not to adjust
the temperature or change the amount of water each plant gets based on the
input the grower gets from sensor readings. In the game the AI has to con-
sider whether or not to research a given upgrade based on the knowledge it
has about its opponents. Both the grower and the game AI are rated against
how well they did in general and with regard to their strategy. Winning for
the grower means that the majority of the plants survived and losing that
the majority, or all, of the plants died.

Therefore, to answer the question posed earlier; it would seem like games
and growing plants have a lot in common, but there are, not surprisingly,
differences too.

1.2.3 Transparency

In game AI the only interesting part is the outcome of the AI, meaning that
the calculations in between is of no interest to the user. This is, however,
not adequate in a decision support system for a greenhouse. It is necessary
to make the decisions of the software transparent to the grower, and equally
important that the grower understands the way the system is influencing the
operating results.

From the point of view of the grower, the following hesitations and ques-
tions have often been recorded:[4]

• Have claimed benefits been proven in real situations?

• Are decisions made by the system transparent and understandable for
me, the grower?

• What are the risks of combinations of settings produced by these new
controllers that are outside the experience domain of me and my col-
leagues?
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• Which combinations will result in stress, and how do I know the critical
boundary conditions of the crop?

• Does the system deal with quality aspects of the cultivation? If not,
can I still intervene to correct undesirable conditions?

• Can the models really be trusted?

• Is the system flexible enough to accommodate change of crops and new
investments?

• Is there a strong user support?

These statements emphasize the importance of the proposed solution be-
ing able to somehow reason about the choices it makes. This will be an
important benchmark when evaluating which technologies to apply to the
problem.

1.3 Roadmap

This thesis is structured in such a way that Chapter 2 first introduces the
reader to an array of different AI technologies. Chapter 3 evaluates each
of these technologies with respect to the greenhouse problem, and a specific
candidate is chosen. Chapter 4 elaborates on the architecture of the devel-
oped solution, and gives the play-by-play of calls through the system. The
framework development is the subject of Chapter 5, which is dedicated to
the inner workings of the general components of the framework. Chapter 6
gives a quick tutorial to the framework, and elaborates on how to extend it.
The greenhouse specific implementations are also described in this chapter.
The development process used in the making of the framework is discussed in
Chapter 7, which also holds a description of how the entire development cy-
cle was automated. Chapter 8 explains the tests written for the system, and
gives the rationale for writing them the way they were written. Chapter 9 is
the discussion and conclusion chapter, which summarizes the achievements
of the project; it is also the last chapter of this thesis.

It is time to get this show on the road; we will start by having a look at
the various technologies that were evaluated.



Chapter 2

Technologies

”I am sorry to say that there is too much point to the wisecrack
that life is extinct on other planets because their scientists were more
advanced than ours.”

— John F. Kennedy (1917-1963)

This chapter elaborates on the technology candidates for the greenhouse
control problem. Each technology is described in summary form to give an
idea about how they work. Furthermore, it is described how they have been
applied in computer games.

2.1 Artificial Intelligence

Intelligence and the illusion of intelligence.

What is artificial intelligence? That is in the eye of the beholder. There
is an important distinction between AI studied in academic research and
that used in computer games. Traditionally academic AI is divided into
two camps: strong AI and weak AI. The field of strong AI concentrates
on trying to imitate the human thought process, and the field of weak AI
focuses on solving real-world problems by applying AI technologies. The
main focus of the two, however, is to solve the problems optimally with little
or no consideration on hardware or time limitations. Academic AI research
will often be more than happy to have a simulation running for hours or

7
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even days on a Beowulf Horseshoe 800+ processor cluster, as long as the
simulation spits out the correct answer.

In game AI on the other hand, time is usually of the essence and processor
cycles are a sparse resource. Because of these constraints game AI has to cut
some corners to provide sufficient realism and performance – the job of the
game AI is to give an illusion of intelligence. The AI designers for the game
Halo[5], for instance, discovered that their playtesters thought the AI agents
they were playing against more intelligent, simply by increasing only the
hitpoints necessary to kill them.[6]

What we were looking for was something in between. Having the system
run for days to provide a solution needed within the next couple of minutes,
is of course not an option. Nor can we get away with only growing plants
that can take a beating.

The following sections introduce the various AI technologies that were
evaluated during this project. Each section concerns itself with a specific
part of AI technology. The sections give only rough introductions to their
target AI. These introductions are mainly to equip the reader with a general
idea of the domain, and to lay out alternatives to the final choices made.

When considering AI as alternative to old-fashioned know-how, an obvious
place to start looking would be in the domain of expert systems.

2.1.1 Rule Based Expert Systems

This section elaborates on the subset of AI technologies known as expert
systems.

Any kind of AI will try to imitate the human thought process in some way.
The only problem is, that the thought process of humans is way too complex
to be represented as an algorithm. However, most experts are capable of
expressing their knowledge as rules for problem solving.

Representing Knowledge as Rules

Often the rules provided by the experts can be formulated as IF-THEN state-
ments. The syntax of a rule is:

IF < condition >
THEN < consequent >

Rules can have multiple conditions, either in conjunction (AND):
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IF < condition1 >
AND < condition2 >

...
AND < conditionn >
THEN < consequent >

Or in disjunction (OR):

IF < condition1 >
OR < condition2 >

...
OR < conditionn >
THEN < consequent >

And the consequent can have multiple clauses:

IF < condition >
THEN < consequent1 >

< consequent2 >
...
< consequentm >

The knowledge of the domain experts are extracted by the knowledge
engineer 1 and put into the knowledge base of the system.

Structure

The structure of an expert system can be split into three main components:

The Knowledge Base contains the extracted expert knowledge stored
as a set of rules.

The Database consists of the facts of the system, used to match
against the conditional part of the rules in the knowledge base.

The Inference Engine handles the reasoning of the system. It links
the rules from the knowledge base with the facts from the database,
and by exercising those against each other, reaching the solutions.

1The knowledge engineer is the person responsible for transferring the knowledge and
reasoning of the expert into the expert system.
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Inference Techniques

The inference engine compares the facts from the database with the rules
from the knowledge base. When an IF condition from the rule matches a
fact, the rule is fired and its THEN consequent is executed. This execution
may add a new fact to the database, and thereby cause another rule to fire.
This is called inference chaining.

When an inference engine decides which rules are to be fired, it uses one
of two principal ways; either forward chaining or backward chaining.

Forward Chaining is also called data driven, since it starts with only the
known data, and proceeds forward, firing only rules which condition is
fulfilled.

Backward Chaining is also called goal-driven inference. The inference en-
gine is given a hypothetical solution and it then tries to find evidence
to prove it. When presented with a goal it searches the knowledge base
to find any rules that has that goal as their consequent. It then stacks
that rule and searches for rules that match its condition part. It then
stacks them and keeps this chaining until it reaches a condition that is
met by facts in the database.

Conflict Resolution

An expert system needs to be able to solve conflicts between the rules that
comprise its knowledge base. Among the solutions to this problem are:

• Priority: all rules in the knowledge base are given priorities, and
conflicts are handled with respect to the priority of the involved rules.

• Freshness of Data: if conflicts arise fire the rule that uses data most
recently entered in the database.

Dealing with Uncertainty

Often the information available to the expert system is incomplete, incon-
sistent, or uncertain. Some approaches to enable expert systems to cope
with uncertainties have been developed; the main paradigms are Bayesian
Reasoning and Certainty Factors.
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Bayesian Reasoning works by applying a conditional probability, p, to the
consequent (THEN part) of the rules. When the rules are fired their p-
value is ”accumulated”, and the expert system produces an answer with
a probability of being right. Bayesian reasoning relies on well proven
probabilistic theory, and is therefore primarily applicable if sufficient
statistical data is available.

Certainty Factors is a more heuristic approach to overcoming uncertainty.
Like in Bayesian reasoning the consequent of the rules are assigned a
value, cf, however, the certainty factor of the rule is as measure of the
expert’s belief, or disbelief, in the rule. The use of certainty factors is a
practical alternative to Bayesian reasoning, as it coincides nicely with
the thought process of a human expert.

Computer Game Relation

The computer game utilization of expert systems was primarily in the seven-
ties and eighties for sport simulation games, e.g. baseball manager games.[8]
Where the expert system was queried for the next ”move” with respect to a
given situation.

One of the most well known expert systems ever is probably IBM’s Deep
Blue, which defeated chess Grand Champion Garry Kasparov back in 1997.
IBM Research Group them self describes it as: ”. . . a turbocharged expert
system.”[9]

2.1.2 Fuzzy Reasoning

Fuzzy logic is based on the realization that the human language is ambiguous.
The language deals in terms like: ”slightly”, ”often”, ”quite” and ”very”.
Classical logic deals in crisp values, where crisp are exact values like ”true”
and ”false”, or temperature=22.5 ◦C. Fuzzy logic, however, uses the same
terminology as the spoken language. Instead of stating IF (temperature >
25 ◦C) THEN (open windows), fuzzy logic uses statements as IF (temperature
is high) THEN (open windows). This is managed by applying membership
functions to assign crisp values to fuzzy sets. The membership functions and
the fuzzy sets are defined by experts who have domain knowledge. The fuzzy
reasoning works in three major steps:
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1. Fuzzification: using membership functions to assign crisp values to
appropriate fuzzy sets.

2. Rule evaluation: application of fuzzy rules.

3. Defuzzification: obtaining the crisp results from aggregation of rule
outputs.

The easiest way to explain how it works is through an example. Lets
say we have three fuzzy sets; FS1=”temperature is low”, FS2=”temperature
is medium”, and FS3=”temperature is high”; and the current temperature,
which of course is a crisp value, is 22 ◦C. The membership function then
assigns the current temperature to the three sets, with a given degree of
truth, usually between 0 and 1, giving them a partial membership of the
given sets, see Table 2.1.

Fuzzy Set FS1 FS2 FS3
Partial membership 0.1 0.6 0.3

Table 2.1: Partial membership with respect to the fuzzy sets

The logic then concludes that the current temperature is primarily medium
but slightly high, which is consistent with what a human would conclude, and
the rules can then act accordingly.

The application possibilities of fuzzy logic are very wide. In expert sys-
tems or hybrid intelligent systems, hybrids are explained in Section 3.2, where
human experts provide knowledge into the system, fuzzy logic is very appli-
cable because of its high cohesion with the spoken language.

Computer Game Relation

Consider writing the rules for a henchman’s actions towards the player in a
computer game. Whether the henchman should attack, defend, or retreat.
Assume the only parameters he needs to consider are his health and firepower.
Using traditional logic for this problem would result in a massive collection
of rules, like:

IF health > 90%
AND firepower > 50%
THEN attack
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IF health < 10%
AND firepower > 50%
THEN defend
... (accounting for every possible scenario)

By using fuzzy logic, the rules would look like:
IF health is low
AND firepower is medium
THEN defend

Actually mapping the rules into a simple associative matrix. See Figure
2.2. This greatly reduces the number of rules necessary and thereby reducing
the complexity of the system.

Low Health Medium Health High Health
Low Firepower Retreat Defend Attack
Medium Firepower Defend Defend Attack
High Firepower Defend Attack Attack

Table 2.2: Fuzzy Associative Rule Matrix.

2.1.3 Artificial Neural Network

An Artificial Neural Network is the AI technology that resembles the way
a biological brain works the most. Even though no precise definition of a
neural network exists, the way they are built is agreed upon by most. Neural
networks consist of a network of nodes. These nodes have many names, but
the most commonly used names are “Neurons” or “Processing Elements”.
The simplest neural network consists of one of these neurons in a “layer”
between input and output.

Artificial Neurons

The building blocks of neural networks are interesting in such way that we
by looking at which problems they are suited for, get an idea about what
makes neural networks tick.

The first ”artificial neuron” was described by Warren McCulloch and Wal-
ter Pitts in 1943.[11] The neuron they described is also called the ”Threshold
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Figure 2.1: Structure of a perceptron.

Logic Unit”. What it did was to take one or more inputs, sums it and pro-
duce an output of either zero or one. In other words it splits the input into
two categories.

Later more advanced artificial neurons where created. They use more
advanced mathematical functions to classify their input into more nuanced
categories.

Perceptrons

Neural networks that consist of one or more layers between input and out-
put are commonly referred to as layered perceptrons or just perceptrons.[12]
Other types of networks do exist but the perceptrons are usually the tech-
nique chosen for most machine learning tasks. The structure of a perceptron
can be seen in Figure 2.1.

Perceptrons are good at dividing input up into various groups and, when
put into a network, can make even better divisions into groups. This capa-
bility of finding complex relations between input and output can be used for
many things; one is to find patterns in data. These abilities can and have
been applied in many areas.

The other variations of neural networks that exist can be applied to a
multitude of problems. Many of them are very similar to perceptrons in
their construction. The description of them will be omitted here, but good
descriptions can be found in the literature in the bibliography of this thesis.

Machine Learning

What really makes neural networks interesting is their capability to be trained.
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It has been proven that the training of a neural network is an NP-complete
problem, i.e. when the problem grows linearly the training complexity in-
creases exponentially.[13] This has however not deterred people from training
neural networks.

When training a neural network the answer it provides must somehow
be evaluated. This means that when deciding whether or not a solution
delivered by the neural network is good enough, a cost function is usually
applied. This cost function will almost always depend on the task.

In Machine learning three main paradigms exist:

Supervised Learning: What characterizes supervised learning is that the
output for a given set of input is already known. This usually sim-
plifies the cost function into being the distance between the output
delivered by the network and the known result. This can e.g. be used
in regression and pattern recognition.

Unsupervised Learning: When using this method there is no training set
of data. The cost function will be the advanced part giving some fit-
ness level of the relation between input and output. A neural network
trained with unsupervised learning can e.g. be used for estimation and
compression.

Reinforcement Learning: With this technique nothing is known of the
relation between input and output beforehand rather the learner per-
ceives the environment and then chooses an action from its set of pos-
sible actions. The environment then responds to this action and a
”reward” is then given to or perceived by the learner. The goal for the
learner is then to maximize the reward. This technique could also be
called ”learning by doing”. Neural networks using this learning tech-
nique are usable in, for instance games and control problems.

General Problems

Neural networks are subject to noise, which can result in over- and underfit-
ting. If we look at the input it is split up into two parts; signal and noise.
The signal is the foundation for the solution and the noise is just that, noise.
When the network is underfitting it is not capturing the entire signal and
hence not producing a good solution. When overfitting the noise becomes
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part of the base of the solution. This can be avoided by using very large
training sets or using specific learning strategies.

Another problem is the “blackbox” nature of neural networks. They tend
to be good at solving problems but give no explanation on how or why specific
solutions where chosen.

Neurons meet computer games

Neural networks have been used in many computer games. They are used to
calculate the best path and steer around a racetrack[14] or controlling the
desires of non-player characters like in Black & White[16] where the desires
and actions of the creature is controlled by several neural networks.[17] In
general however, the game developers have stayed away from letting the
neural network learn online, i.e. while playing, just in case it was to learn
something unexpected and for this to result in broken gameplay.

2.1.4 Evolutionary Computation

”Natural selection is a mechanism for generating an exceedingly
high degree of improbability.”

— Sir Ronald Aylmer Fisher (1890-1962)

Evolutionary computation was developed with inspiration from the the-
ory of evolution. The whole idea is that solutions are ”bred” through a
natural selection process, not unlike ”survival of the fittest”. The way this
is calculated is through the use of Evolutionary Algorithms.

Evolutionary Algorithms

Most evolutionary algorithms are built with four phases. The first phase is
the Initialization phase where the initial population is created. A member of
the population, or individual, consists of a number of ”chromosomes” which
are parts of the input data.

The next phase is the Evaluation phase where all the individuals are
evaluated and classified according to how well they solved the problem. This
evaluation measurement is also called the fitness level of an individual.
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Then the phase of Selection begins. In this phase an amount of individu-
als are selected, based on their level of fitness, for ”breeding” new individuals.
The fourth and last phase, before starting over from the Evaluation phase
again, is the recombination or Reproduction phase. In this phase the chro-
mosomes of the individuals chosen in the selection phase recombined. Again
terms from the biological world is borrowed namely the selected individuals
are called the parents and the recombined individuals the children.

The three phases Evaluation, Selection, and Reproduction are repeated
any number of times until some criteria for termination is met. This criteria
can be based on time, fitness level etc. After termination the child with
the best fitness level is chosen as the best guess for a solution to the given
problem.

A big problem, in the field of evolutionary computing is that a chance of
ending up in an evolutionary ”dead end” with only suboptimal solutions left
is always a possibility. Some methods have been introduced to remedy this
problem.

Mutation

One of these methods is known as mutation, where some randomness is in-
troduced into the population via altering a few chromosomes at random in
or after the reproduction phase. This keeps the population diverse and sig-
nificantly reduces the risk of ”dead ends”.

Variants of Evolutionary Algorithms

There are many variants of evolutionary algorithms. Two of the variants are

Genetic Algorithms Here the individuals are represented by lists of num-
bers. One or more crossovers points (places where the individual is
split into chromosomes) are present in this list.

Genetic Programming In this method the individuals are small programs
which are then recombined to fix a bigger computational problem. This
branch of evolutionary computation is very interesting, as this has ac-
tually produced two entirely new patentable solutions.[18]
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Evolving Game AI

Evolutionary computing is used in many games as a mean to generate the
good opponents. Many first person shooter games use genetic algorithms to
train the computer-controlled opponents. This way of training is highly re-
warding. This is because, when testing and developing good game opponents
the game is tested at the same time. Taking a mediocre collection of oppo-
nents and then using evolutionary computing to develop them can result in
unexpected behavior, but always results in an improvement of fitness after
some generations.[19]

2.1.5 Planner

When performing any task the same pattern often arises. A goal defines when
the task is done, and reaching this goal is possible in many different ways. It
is usually possible to divide a task into several smaller subtasks which have
some prerequisite, e.g. other completed sub tasks. Completing the task in
an effective manner requires the formulation of a plan. If this formulation
is done at random, the task may not be completed in the shortest possible
time. It is also possible that the same work can be done another way or as
a consequence of other subtasks completed first. This will then result in the
task being completed with less energy used or less work done.

Problem Representation

When a computer has to simulate this behavior it does so by translating the
problem into data it can understand. This state is represented internally
as e.g. some sensory input like the known placing of game characters or
what the current temperature is. These states can then be changed by some
actions, like turning on a heater or picking up a weapon. This then alters
the state of the system, but any action will usually involve a cost. This cost
could be the energy used by a heater or the loss of ammo when firing a gun.
It is also important that the goal of any plan or task can be translated into
a system state e.g. the known position of the player character is on the floor
in front of you.

The best way to represent these states and state changes is as graphs. A
graph, used in a planner, is a set of vertices representing the various states
and a set of edges representing a connection between those states. For more
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complex problem representations, the edges can also be weighted. This adds
the possibility to attach the cost of actions resulting in a change from one
state to another.

Formulating a Plan

When the entire problem has been translated into something, the computer
can understand only one task remains: formulating a plan. With the above
representation, there are two possible ways of generating a plan: searching
forward form the current state to the goal or backwards from goal to source.
Searching backwards is advantageous when every state has some prerequi-
sites which must be met.[20] Searching forward is advantageous when states
do not have any specific prerequisites. Either way this is a pathfinding prob-
lem, which can be solved more or less efficient depending on the choice of
pathfinding algorithm.

When using a good pathfinder it is possible to calculate optimal plans
for a given problem and save energy by doing that. When using an efficient
pathfinder it is even possible to save computation power which is paramount
when this type of AI is used in games.

Planners and Free Agents

Applying planners to games yield many benefits. When maintaining the rules
of the game e.g. adding the ability to reload a weapon but only when the
weapon is drawn. This is an easy addition because the only thing that needs
to be updated is the graph. If no planner was employed all the different plans
involving that weapon would have to be updated.

Agents using the planner are free to formulate their own plans at runtime.
This allows for greater diversity and complexity in the plans; all this is given
by letting the decisions be made by these ”free” agents.[20]
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Chapter 3

Technology Reflection

”The unexamined life is not worth living.”

— Socrates (470–399 BC)

In this chapter the AI technologies described in the previous chapter are
evaluated with respect to their value in climate control. Also combinations of
these technologies are evaluated before finally chosing a candidate for solving
the greenhouse control problem.

3.1 AI vs AI

We have considered several AI technologies, as described in Chapter 2. The
following reviews the pros and cons of the various techniques in relation to
the greenhouse problem domain.

3.1.1 Expert Systems

The analysis of an expert system as candidate for the greenhouse control
problem reveals several weaknesses. First and foremost expert systems need
the entire problem domain quantified to work properly – if no rule exist for
a given situation, the expert system has no basis for reasoning and therefore
will not work. In a greenhouse environment unforeseen situations most cer-
tainly will occur, situations were the expert (grower) knows when to ”bend
the rules”. An expert system is incapable of learning and will not know

21
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when the rules need bending. Another problem is that the interrelationship
between the individual rules is non-transparent; which can result in nonde-
terministic behavior.

3.1.2 Artificial Neural Network

When considering a neural network as a candidate, the technique seems like
a prime candidate. They can be trained with existing data and results. The
plans they then yield will also be good candidate plans for solving the problem
at hand. Even if the gardener chooses to correct some of the decisions made
by the neural network it would just learn and adapt.

However, some problems emerged. Retraining of the neural network could
be needed if there is a drastic change in the rule set used to govern the plant
growth. This change in the rules could be introduced by many things i.e new
plant diseases, fungus etc. This then amounts in another set of training data
that has to be generated. To generate this data a few generations of plants
would have to be grown in diverse ways for the neural network to learn how
to act. This could generate massive loss in the production for a while.

There is also the fact that there has to be a trained neural network for
each plant type. The complexity of this training is also an important thing
to consider here. If the training is not good enough the entire crop could
be destroyed. It is said that neural networks should only be used where it
is not of paramount importance that the neural network is right.[15] When
controlling the greenhouse it is ok to make some minor errors in judgment.
But a few, even one, severe problem and the entire crop could be lost. To
avoid this, substantial amounts of data would have to be mined to produce
both training and test sets. This data is at present not available.

Even if all of the above is achieved and rectified, one problem persists; it
is next to impossible to give any explanation why specific steps in the plan
were chosen. This poses a problem because it is necessary for the grower to
know why a specific course of action is chosen and act accordingly, as the
grower may know something the neural network does not.

The amount of problems this technique posed deemed it impractical to
be used for the greenhouse control problem.
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3.1.3 Evolutionary Computation

Using evolutionary computation as a means for solving the greenhouse control
problem is a definite possibility. Each plan that has to be performed by
the climate computer is a list of actions. These separate actions are easily
implemented as chromosomes for use in an evolutionary algorithm. It is then
possible for a good plan to be bred.

This approach may not be as efficient as other approaches but it can get
the job done. However, the problem with an evolutionary approach is similar
to the problem with neural networks. It is very hard to explain/reason why
specific steps in the plan where chosen. It is even hard to explain why one
child was chosen over another in the evolutionary algorithm, because there
is an element of randomness to the choice.

This technique has also been deemed unusable due to the problem with
not being able to explain decisions.

3.1.4 Planner

Applying the planner technique to the greenhouse control problem yields
good results. This is because all problems can be divided into state changes
based on actions. This makes it possible for the planner to seek out an
optimal plan. The challenge in applying this technique is that predicting or
calculating the consequences of adjusting setpoints can be hard. One of the
challenges is that setpoint adjustments are not orthogonal i.e. two different
setpoints can have an impact on the same variable. This is because setpoints
usually have a direct effect and one or more side effects. An example of this
is adjusting the heater has a direct impact on temperature but also has an
indirect impact on the relative humidity.

Feedback regarding conflicts, limits, and costs have to be modeled. These
have to be added to the planner as e.g. edge weights or somehow removed
as possible states in the graph. This poses another challenge, because these
edge weights or state removals have to be generated or controlled somehow,
but if this is overcome the planner would be able to handle both conflicts
and limits very well.

One great advantage when using the planner technique it is easy to re-
trieve the reasoning for each step in the plan which adds to the feeling of
transparency.
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3.2 Hybrid Intelligent Systems

The technologies reviewed so far have their advantages and disadvantages.
However, by combining the different technologies it is possible to eliminate
some of the obstacles associated with each specific technology, and thereby
achieve a better overall result.

Combination of AI technologies is the very basis of soft computing, an
initiative of Lotfi Zadeh, the ”father” of fuzzy logic.[21] The idea of soft
computing is to combine fuzzy logic, neural networks, evolutionary comput-
ing, and probabilistic reasoning. Such a system would be capable of reasoning
and learning, and, at the same time, tolerant of uncertainty, imprecision and
partial truth. Lotfi Zadeh is reputed to have said that ”. . . a good hybrid
would be ’British police, German mechanics, French cuisine, Swiss banking
and Italian love’. But, ’German police, French mechanics, British cuisine,
Italian banking and Swiss love’ would be a bad one.”[7]

It is, however, not necessary to apply the whole array of technologies to
benefit from combining them.

3.2.1 Italian Love and German Mechanics

Neural Expert Systems As discussed earlier, expert systems are not ca-
pable of learning or adapting to a changing environment. This is on
the other hand the strong side of neural networks. The drawback of
neural networks is the fact that they represent a ”black-box” for the
users. They are unable to explain their reasoning. This is, however, the
strong side of expert systems. Thus, when combining expert systems
and neural networks, the spawn is a hybrid intelligent system, capable
of learning and adapting, and being able to explain its reasoning. The
neural expert system uses a trained instead of the knowledge base of
an ordinary expert system. The neural net is capable of generalization
and the hybrid is therefore equipped to deal with noisy or insufficient
data. This ability is called approximate reasoning.

Neuro-fuzzy Systems The neural expert system hybrid is still dependent
on traditional Boolean logic. This limitation is addressed by neuro-
fuzzy systems. The neural network part deals with the raw data where
it performs well. The fuzzy part deals with the higher-level reasoning.
The hybrid combines the excellent parallel computation and learning
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abilities of the neural net, together with the human-like knowledge
representation and explanation abilities from the fuzzy systems. The
neural net becomes the inference engine of the fuzzy system.

Problems of Using Neural Networks Neural networks, in any constel-
lation, still require a significant dataset, to use for training and testing
the networks. Unfortunately, we do not have large data sets for the
greenhouse problem.

Evolutionary Neural Networks One of the problems with plain old neu-
ral networks is that the learning algorithms cannot guarantee an op-
timal solution. The teaching of the network might converge in a sub-
optimal solution, from which it cannot escape. This problem manifests
itself both in the weights, as well as in the topology, of the network.
For most real-world applications, this is unacceptable. Evolutionary
computation, on the other hand, deals with optimizing based on ”nat-
ural selection”, as described in section 2.1.4. A way of circumventing
the drawback of the neural network is to combine it with evolutionary
computation. By encoding the weights or the topology of the network
into chromosomes and performing a genetic search, an optimal solution
would eventually emerge.

Same Old, Same Old The usual problem with neural networks still persist
though; the total lack of explanatory capabilities.

Fuzzy Evolutionary Systems Genetic algorithms can be applied to gen-
erate fuzzy rules and adjusting membership functions. To apply the
genetic algorithms an initial population of feasible solutions is needed.
This approach, however, is primarily applicable to classification prob-
lems. For instance, it could be used as knowledge acquisition method
for data mining tasks in complex databases.[7]

Especially fuzzy logic is used in combination with many other technolo-
gies. As mentioned in Section 2.1.2, the main advantage of fuzzy logic is how
it correlates with the spoken language, and thereby the way humans think.
This advantage is highly applicable combined with other technologies, as it
simplifies development and reduces potential combinatorial explosion when
trying to account for the entire sample space of a domain.
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3.3 The Chosen One

When piecing together the different advantages of the technologies it became
clear that the best solution would be a hybrid of some of the systems. The
best course of action for making a choice was to look at the IntelliGrow ap-
plication. It makes use of something called components. These components
were actually small expert system modules telling the system which values
to choose. As small expert systems, they functioned well, but when needed
to work together problems arose. This problem was solved by making them
have desire levels telling when their opinion was important and when it was
not. These desires made the whole AI seem a lot like something to control
non player characters.

With this solution, one challenge remained; the potential conflict in the
chosen setpoint values. The solution was to make use of a planner which
could simultaneously handle the potential conflicts and still maintain the
ease of explaining each step in the plan. The conflict handling was done
by using the desire levels of the rules as values for the edges. The rules
that describe the conflicts would then add massive weights to the edges that
contained conflicting settings. This would cause conflicting setpoint values
only to be chosen as a last resort. Furthermore, each step could be explained
because each rule would give an explanation why it returned some specific
desire value.

The combination then ended up as a Rule Based Planner. This is a
very flexible solution applicable to many more areas than greenhouse climate
control.

The following chapters deal with how this technology applies to the mis-
sion objectives and the greenhouse control problem, and how it evolved into
a framework.



Chapter 4

Framework Architecture

”Perfection does not exists - only the evolution towards it.”

— Motto, Ferrari Formula One (1975-6)

This chapter elaborates on the conceptual design and architecture of the
framework. The following sections outline the conceptual overview of the
framework. The main components of the planner are described, as well as
the bits and pieces that hold the framework together.

4.1 Conceptual Overview

The framework operates with three major concepts: goals, graphs, and rules.
This section is dedicated to defining this threesome.

4.1.1 Goals

A goal represents a system state. In the greenhouse, any goal consists of a list
of the sensors, which have some relevance to the deliverer of the goal. E.g., a
goal devised by some temperature rule, see Section 4.1.3, may only contain
information for the temperature sensor or thermometer, because other sen-
sors has no relevance to the rule. The system then extrapolates the remaining
data.
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4.1.2 Graphs

The heart of the framework is comprised of graphs. A graph consists of a set
of vertices and edges; which in this framework is represented in such a way
that each vertex represents a state and each edge a transition between two
states. Within an edge information is stored about what has been altered to
result in the state change. One important thing to note here is that all state
changes are not necessarily reversible and therefore the graph must in most
cases be a directed graph. Furthermore, to keep the results from the path
finding sound, the best course of action is to keep the graph acyclic, this is,
however, not a necessity.

4.1.3 Rules

The building blocks of this framework are the rules. They represent con-
straints, restrictions, conflicts, and directions. The primary functions of the
rules are to give the goals for the planner and to restrict the calculations.

The rules may be goal-oriented. E.g., the goal of a mean temperature rule
may be a temperature state of 18 ◦C, whereas a maximum temperature rule
may only ”know” that the temperature must not exceed 28 ◦C. When the
system calculates the goal to pursue for the next plan, all rules are queried
for their preferred goal given the current state of the system. If a rule only
represents e.g. some boundary constraint, it may not have any opinion about
the result of the plan, and may then return nothing. This means that rules
have direct influence on the result of the planner.

Furthermore, the rules are queried for an ”opinion” of each state-change
calculation. When queried, they must respond with a desire-for-change; a
measure of how much they want to change the system state from one to the
other. This desire is used to calculate the edge-weights in the graph. This
modus operandi means that the rules have direct influence on the direction
of the calculations.

4.2 Overview of Framework

The planner framework, which is implemented to be used as a service, consists
of three major components; the blackboard, the goal handler, and the planner.
Each of which has a specific set of responsibilities with respect to calculating
the best plan of action for the system. The primary responsibility of the
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blackboard is to mediate communication between the different parts of the
system. The goal handler is responsible for choosing the next goal to base
calculations on. The planner, the major player in the framework, handles
the calculation and generation of plans. The following sections will elaborate
further on these components. Figure 4.1 shows the general outline of these
components.

4.3 Primary Framework Components

This section explains the specific modules necessary to understand the frame-
work. These descriptions are kept at a provisional level, only to equip the
reader with a general understanding of the framework structure. The gory
details are postponed to the development and extension chapters.

4.3.1 Blackboard

The blackboard handles the interactions between the components of the sys-
tem. This architecture decouples the interactions between the different par-
ticipants of generating a plan. Besides handling internal communication,
the blackboard is also responsible for external communication. To ensure all
available information only be put and accessed in one place, the blackboard
is an implementation of the Singleton pattern.[22]

The blackboard acts as a façade to the rest of the system; it holds the
method for requesting a plan. The first step in generating a plan is to figure
out which is the top priority goal to aim for; this is the domain of the goal
handler.

4.3.2 Goal Handler

First and foremost the goal handler retrieves the goals from the rules and pri-
oritizes them. All interaction with the rules is done through the rule engine,
which is explained further in Section 5.8.4. The goal handler represents each
request for the goals in a specialized internal queue, that queue is explained
in Section 5.8.3. The primary reason for the goal handler was to abstract the
prioritizing, or possible merging, of goals into a separate component. As of
this writing the goals are merely prioritized by comparing their desire, but
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Figure 4.1: Overview class diagram
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any other prioritizing of the goals can be done within the domain of the goal
handler.

4.3.3 Planner

The planner is where the magic happens. The real-world problem is trans-
lated into a graph problem, the graph is searched, and a plan is generated.
The planner is divided into three smaller parts; the graph generator, the
pathfinder, and the plan generator. They are briefly described here. Section
5.6 in the following chapter is dedicated to unraveling how the magic is really
done.

Graph Generator The graph generator constructs the graph for the pathfinder
to search. The graph is constructed from a goal and the current system
state.

Pathfinder The constructed graph is searched by the pathfinder. This
search marks the shortest path1 through the graph, by a pointer from
each vertex to the vertex immediately preceding it.

Plan Generator The path from the pathfinder search is translated back
into a real-world solution by the plan generator. The result of the plan
generator is a plan, consisting of a sequence of steps to carry out by
the requester.

4.4 Auxiliary Framework Components

This section explains the various utility classes used in the framework. The
same level of description, as used in the previous section, is applied in this
section. Again, all the more intricate details are postponed to the framework
development and extension chapters.

4.4.1 Goal

The aim of any plan is to reach a goal. Because the goal concept in this
system only holds information of where to go, it is represented as a single
class. The Goal class describes two things:

1the shortest path is defined as the path that has the least accumulated desire.
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• The end state it represents; which is the goal state.

• A desire measure of how much the rule that delivered the goal wants
to have it fulfilled.

The goals are provided by the rules. This will be elaborated in the fol-
lowing Section 4.4.3.

4.4.2 Graph

The graph is interchangeable in the framework. This enables the use of both
predefined and dynamically generated graphs, but they must adhere to the re-
quirements of the search algorithm implemented in the pathfinder. The graph
and its components are therefore defined through a set of interfaces with
implementing classes. The outline of the dk.deepthought.sidious.graph

package is depicted in Figure 4.2.

4.4.3 Rules

The concept of rules was divided into an abstract class, holding a variety of
convenience methods, and a set of concrete rule implementations, holding the
domain specific knowledge. Figure 4.3 shows the relationship, exemplified by
the dk.deepthought.sidious.rules package.

The important aspects of rules are the desire functions and the goal ex-
traction.

Desire Functions The planner is based on being able to query the rules for
a measure of how ”happy” the given rule is with a given state-change,
this measure is called its desire. The edge weights is derived from that
desire, and it is therefore of great importance for the correctness of the
system. Section 6.4.2 is devoted entirely to this subject.

Goal Extraction A planner needs a goal to aim for. Again, the rules are
called upon to provide that goal. This goal forms the basis for the
generation of the graph. The provided goals must have a desire value
attached. Section 6.1.1 explains this task further.

The abstract base class is described further in Section 5.4, and the con-
crete implementations are described in Section 6.3.2.
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Figure 4.2: Class diagram of the dk.deepthought.sidious.graph package



34 CHAPTER 4. FRAMEWORK ARCHITECTURE

Figure 4.3: Class diagram of the dk.deepthought.sidious.rules package

4.4.4 SuperLink ID

The SuperLinkID class is an encapsulation of the identifier in the SuperLink
application.[23] It acts as a unique identifier of all individual external com-
ponents, e.g. climatic sensors, set points, the greenhouse etc. Instances of
this class are immutable.

4.4.5 State

The system operates on state. When planning starts, the current environ-
mental state of the client is used as starting point, and the goal of the plan-
ning is the state where the client wants to be; or at least where the rules of
the client think it wants to be.

State is represented as an interface in the system. This promotes low
coupling, and lets the clients have full flexibility of how to represent state in
their system.

However, classes implementing State is presumed to be a container of
state descriptors. The ClimaticState class, that implements the State in-
terface, is exactly that. These state descriptors are implemented as SensorInput,
which is the subject of the next section. The ClimaticState class is de-
scribed in Section 6.3.3. The collaboration is shown in Figure 4.4.
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Figure 4.4: Class diagram of State and its collaboration classes

4.4.6 SensorInput

A SensorInput represents a microstate. It captures specific measurable en-
vironmental variables; disguised as sensors. The SensorInput class encap-
sulates the id of a specific sensor along with its current value. The class is
immutable, and its overridden equals method ensures that sensors are equal
on their ids.

4.4.7 Adjustables

The planner needs to be able to change the state that comprises the envi-
ronment. The actuators for doing so are called adjustables, as they represent
certain places for the system to adjust the state. To maintain flexibility this
concept is implemented as an interface. The implementation is discussed
further in Section 5.3.
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4.5 Explanatory Capabilities

As it is stated in the introduction to the thesis, and all AI technologies have
been evaluated upon, it is of vital importance that the system is capable of
reasoning about its choices. It should of course be able to calculate a viable
plan, but it should also be able to explain how and why it ended up the way
it did.

The VIP players in the planning are the rules. They decide what goal to
pursue and which direction to follow. As such, they are prime candidates for
being part of the explanatory capabilities of the system.

The reasoning approach of the system is to capture the ”state” of each
rule for each calculated step in the plan. This is accomplished by letting the
evaluation of the rules store the rule-desire association in specialized objects,
and publish them through each step in the plan. The collaboration is shown
in Figure 4.5. The concrete implementation is discussed further in Section
5.7.

4.6 Play-by-Play

This section outlines the flow of the framework. First is a short overview of
the flow through the blackboard, goal handler, and planner. This is followed
by a more thorough description of the flow in the planner component.

4.6.1 Flow Outline

The framework is built to be used as a service. Figure 4.6 illustrates the
general flow through the framework. The service is activated by a request for
a plan (1.1). When this request is made, the blackboard requests a goal from
the goal handler (1.1.1). When the goal handler delivers the requested goal
(1.1.1.1), the blackboard requests the planner to calculate a plan (1.1.2). The
planner calculates the plan and delivers it back to the blackboard (1.1.2.1).
The blackboard then places the calculated plan on the originating requester
(1.1.2.2).
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Figure 4.5: Class diagram of the explanatory capabilities

Figure 4.6: General framework flow
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Figure 4.7: Sequence diagram of the planning.

4.6.2 Planner

The planner basically consists of three queues. Each of these provides sepa-
rate thread-safe processing for the components comprising the planner. Fig-
ure 4.7 illustrates the call sequence. (See Appendix C.1 on page 128, for a
larger view of figure 4.7.)

When the planner receives a request for a plan it enqueues the goal for
processing by the graph generator (1.1). The graph generator dequeues the
goal and constructs a graph (1.1.1). The graph is then enqueued for pro-
cessing by the pathfinder (1.1.2). The pathfinder then searches the graph
(1.1.2.1); during this search all information generated is stored within the
graph. This graph is then delivered back to the planner, to be enqueued
for processing by the plan generator (1.1.2.2). The plan generator processes
the graph and constructs a plan (1.1.2.2.1). The constructed plan is then
delivers back to the planner (1.1.2.2.1.1). The circle is now complete and the
plan is delivered to the blackboard. The collaborating classes are shown in
Figure 4.8. As promised, these classes will be fully disclosed in the following
chapter.
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Figure 4.8: Collaborating classes of the planning.
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4.7 GUI Package

The project also holds a GUI package, the dk.deepthought.sidious.gui

package. This package functions only as a debug hook into the planner
algorithm. It is implemented as a standard model-view-controller, where the
controller registers itself for ”events” from the model, and passes them on to
the view.

The package provides nothing more than an insight of how the adjusta-
bles in the planner change value during calculation. It is implemented as a
debugging tool only, and will not be elaborated further in this thesis.



Chapter 5

Framework Development

One day Alice came to a fork in the road and saw a Cheshire cat
in a tree. ”Which road do I take?” she asked. ”Where do you want to
go?” was his response. ”I don’t know,” Alice answered. ”Then,” said
the cat, ”it doesn’t matter.”

— Lewis Carroll (1832-1898)

This chapter investigates the development and implementation of the
framework. It touches upon every aspect of development. First, the differ-
ent topics used in the development are covered, then the implementation of
the individual parts and the history and milestones of the development is de-
scribed. Lastly, the requirements for running and developing are stated, along
with considerations regarding the quality of the code.

5.1 Principles and Algorithms

The following describes principles and algorithms which have been integrated
or implemented in the framework.

5.1.1 Multi Threaded Environments

Once upon a time, concurrency was an ”advanced” topic; but with ordinary
desktop computers becoming multi cored, those days are over. Even if a
program is designed to take advantage of only one thread, running it in a

41
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@Immutable
public class Explanation {

private f ina l Co l l e c t i on <ExplanationEntry> e n t r i e s ;

public Explanation ( f ina l Co l l e c t i on <ExplanationEntry> e n t r i e s ) {
this . e n t r i e s = new ArrayList<ExplanationEntry >( e n t r i e s ) ;

}

public Co l l e c t i on <ExplanationEntry> ge tEnt r i e s ( ) {
return new ArrayList<ExplanationEntry >( e n t r i e s ) ;

}
}

Snippet 5.1: The Explanation class illustrates immutability.

multi core environment can render it broken if no consideration has been
made regarding thread-safety.1

The framework is developed with thread-safety in mind. Several measures
have been taken to ensure thread safety, and thereby the correctness of the
system.

Immutability have been used where possible. An object is immutable if
its state cannot be changed after is has been instantiated. Immutable objects
are inherently thread-safe; they can be freely shared between threads because
they do not possess any mutable state, and as such cannot be seen in an
inconsistent state. An example is the Explanation class. Shown in Snippet
5.1. It contains a collection that is set when the object is instantiated, and
thereafter never altered. Notice that the collection is defensively copied when
it is passed to the constructor, and again when the getEntries() method
is invoked. This ensures that the internal collection of the class cannot be
altered from neither the creator of the class, which perhaps still holds a
reference to the collection, and nor from a client as it only sees a copy of the
collection.

To ensure proper sharing of mutable state synchronization is necessary.
The Java keyword synchronized guaranties that only one thread is allowed
within the block of code it encloses. Equally important, it guarantees that
any state altered by a thread within a synchronized block will be visible to
other threads after the block is exited. Synchronization comes at a cost, so
to ensure the liveness of the program, the scope of any synchronized block

1An excellent ”definition” of thread-safety from Brian Goetz: ”...a thread-safe class
is one that is no more broken in a concurrent environment than in a single-threaded
environment.”[24]
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was minimized throughout the system. Snippet 5.2 shows an example from
the BlackBoardEngine.

The getRequester method limits the scope of the synchronized block to
a single statement, and then releases it again.

The addPlan method illustrates another excellent feature of the Java
locking mechanism; that locks are reentrant. The method locks on the
requesterMapping and calls the getRequester method which itself locks
on the requesterMapping. This could seem like a deadlock, as the lock is
already acquired. In Java, however, locks are reentrant. This means that
the caller is identified as already holding the lock for the mapping, and a
lock-counter is then incremented. When the caller releases the lock, in this
case when getRequester returns, the counter is decremented. The lock is
completely released when the counter reaches zero.

Notice that the getRequester call is not necessary within the synchro-
nized block, but whenever an object acquires a lock, it has an overhead. This
overhead, however, is minimized by calling the getRequester method within
the synchronized block, as the lock is not reacquired but merely incremented.

Additionally, thread confinement is used to limit the scope of multi-thread
accessible state. When state, or code, is confined to run in only one thread,
it is per definition thread-safe. The system uses this technique by explicitly
confining calculations, e.g. the graph searching algorithm, to be accessible
only through a specially designed queue, see section 5.8.3, located in the
Planner, see section 4.3.3.

To assist further development of the framework, classes being thread-safe
or immutable have been documented as such. Either in their Javadoc or
by using the annotations Immutable and ThreadSafe; borrowed from Java
Concurrency in Practice[24].

5.1.2 Logging

Logging is used throughout the entire system. It provides an exceptional
way of capturing the current state and context of the system when failures
occur. This information can be invaluable, especially when hunting thread-
ing errors, which can be very hard to recreate because of their very nature.
The log then may be the only way to catch the bug. Furthermore, the log
can be used as a trace of the calls through the system; which can be an
excellent way of checking the correctness of any part of the system. This
feature, however, has a serious drawback for a system that has as abundant
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public PlanRequester getRequester ( SuperLinkID id ) {
i f ( id == null ) {

throw new I l l ega lArgumentExcept ion ( ” nu l l not va l i d id ” ) ;
}
PlanRequester returnPlanRequester = null ;
synchronized ( requesterMapping ) {

returnPlanRequester = requesterMapping . get ( id ) ;
}
i f ( returnPlanRequester == null ) {

Repos i tory . getPlanner ( ) . stop ( id ) ;
return null ;

}
return returnPlanRequester ;

}

. . .

public void addPlan ( Plan plan ) {
SuperLinkID id = plan . ge t Id ( ) ;
synchronized ( requesterMapping ) {

PlanRequester r e que s t e r = getRequester ( id ) ;
r e que s t e r . se tPlan ( plan ) ;
requesterMapping . remove ( id ) ;

}
}

Snippet 5.2: The getRequester and addPlan methods from
BlackBoardEngine.
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a number of calculations as this.2 The mere extent of produced data renders
it useless, at least for human scrutiny, as well as slowing the calculations
severely. The development of the framework extensively relied on testing
as assurance of correctness, this is described in further detail in Chapter 8.
Testing and logging are complementary; combined they ensure the correct-
ness of an application as well as providing valuable information when failure
inevitable occur.

The system makes use of the Commons Logging framework, which is a
thin package bridging a number of different logging frameworks, and makes
it possible to switch specific logging implementation without the need for
recompiling. As specific logging implementation the framework use the Log4J
package, which is perhaps the most widely used logging package for Java. See
Appendix B for references.

5.1.3 Meta Data

The system is designed to be maintained and used by non software profes-
sionals, and as such most configurations can be done through meta data.

The system uses meta data extensively. Primarily this data exists in the
form of Java Properties files. These files describe details that have been
extracted from the source code, e.g. mathematical coefficients for desire
calculations, and maximum and minimum temperature boundaries for rules
regarding temperature. All rules of the system have a dedicated properties
file to enter and alter rule specific data in.

The use of meta data enables on-the-spot tuning and configuration of the
system, without the need for recompiling. Properties files were chosen for
this task because they support both plain flat text files as well as XML files
if needed, and they furthermore enables programmatically default values.

A natural extension of the system could be to extend it with a scripting
language. Instead of using mere properties files, the calculations could be ex-
tracted out of the compiled code and done in a scripting language. The Java
SE 6 release is extended with native scripting language capabilities.[25] This
way, if e.g. a calculation seemed to be done the wrong way, the maintainers
could alter the algorithms on-site. The framework would then become a mere
shell to execute rules through.

2A test run of the entire system with trace log, once generated a 400MB+ log file.
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5.1.4 A*

The A* algorithm is a graph search algorithm. The algorithm makes use of
some rather brilliant things to achieve the effectiveness it has. It maintains
a list of vertices which are yet to be studied. This open list is prioritized
such that only vertices, which are on a candidate path, are extracted. This
prioritization is done using two things. The first is an accumulated weight g
of the cost of the shortest path to get to any vertex on the open list. The
second is a heuristic h which estimates the cost from any vertex to the goal.
When trying to find the shortest path it is important that the heuristic is
admissible. An admissible heuristic for the A* algorithm always returns a
value less than or equal to the cost of the actual shortest path from any vertex
to the goal. If the heuristic is not admissible the algorithm may choose a
suboptimal path.[26]

Besides the open list, A* employ a closed list. This list contains nodes
already looked at by the algorithm. It is used to ensure that the same nodes
are not checked over and over which can result in a drastic performance drop.

Now that the two list types used by A* have been described, the question
of how they are filled remains. The first vertex to be put on the open list
is the source vertex. First, the vertex is moved to the closed list, then all
edges are retrieved and their endpoint added to the open list. Each vertex
then has its g value updated if it is less than the one already stored. If this
is the case the vertex also stores a reference to the start point vertex of the
edge. This recipe is followed until the vertex removed from the open list is
the goal vertex. When this happens the shortest path has been found.

Now a look at the different classes needed to get this algorithm up and
running.

5.2 PlanRequester

The PlanRequester is an interface dictating which methods a client using
the framework should implement. It has been developed to be as simple as
possible because using the framework should be as simple as possible. Figure
5.1 shows the class diagram.

For a more thorough description on how to implement the PlanRequester
parts see Section 6.1.1 in the Framework Extension chapter.
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Figure 5.1: Class diagram of the PlanRequester
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Figure 5.2: Class diagram of Adjustable and implementing setpoint classes.

5.3 Adjustable

An implementer of the Adjustable interface represents an element that can
be adjusted and the result is a change of the environment. An adjustable
must contain a setting and from this setting be able to calculate possible
new settings. To avoid massive amounts of adjustables resulting from this
calculation it is a good idea to divide adjustable settings into notches; notches
could be implemented as enumerations. For instance, when adjusting the
temperature setting, a notch could be represented by one degree up or down.
This results in only two adjustables being returned when retrieving possible
adjustments.

Classes implementing the interface must also contain a setting value, and
override their hashCode and equals methods with respect to this setting.
Besides this, the system assumes the implementing classes are immutable.
All this is documented in the interface, through its Javadoc.

The classes implementing this interface are the SetPoints, which are
discussed in Section 6.3.4. Figure 5.2 shows the class diagram.
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public abstract class Rule {
public abstract Co l l e c t i on <Goal> getGoals ( ) ;
public abstract double d e s i r e ( State cur rentState , State newState , Step step ) ;

public St r ing getExplanat ion ( ) { . . . }
public SuperLinkID getParentID ( ) { . . . }
public void setParentID ( SuperLinkID parentID ) { . . . }
protected double getSensorValue ( State s ta te , SuperLinkID sensorID ) { . . . }
protected double getAdjustableSett ingFromParent ( SuperLinkID adjustab le ID ) {

. . .
}
protected double ge tAd ju s tab l eSe t t i ng ( Step step , SuperLinkID id ) { . . . }

}

Snippet 5.3: The API of the Rule class.

protected double ge tAd ju s tab l eSe t t i ng ( Step step , SuperLinkID id ) {
i f ( s tep == null ) {

return 0 ;
}
Co l l e c t i on <Adjustable> ad ju s t ab l e s = step . ge tAdjus tab l e s ( ) ;
for ( Adjustable ad ju s t ab l e : ad j u s t ab l e s ) {

i f ( ad ju s t ab l e . getID ( ) . equa l s ( id ) ) {
return ad ju s t ab l e . g e tS e t t i ng ( ) ;

}
}
return 0 ;

}

Snippet 5.4: The convenience method getAdjustableSetting from Rule.

5.4 Rule

The Rule is implemented as an abstract class. The reason that Rule is
not an interface was because, during development of rules for the green-
house, a lot of code duplication was discovered. Since this is unacceptable,
the methods was implemented as convenience methods on the Rule class.
The API of the Rule class is listed in Snippet 5.3. An example of this is
the getAdjustableSetting which can be used to extract the setting of an
adjustable from a given step. Snippet 5.4 shows how the method was imple-
mented.

As mentioned in the previous chapter, descriptions of the concrete im-
plementations are postponed to Section 6.3.2 in the Framework Extension
chapter.
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#Conf igurat ion f i l e f o r MorningDropRule

t empe ra tu r e s en so r i d=temperature
t ime s en s o r i d=time
dropTarget=14
dropDuration=120
minutesBe foreSunr i se=30

Snippet 5.5: Property file from a Rule.

public SuperLinkID getID ( St r ing key ) {
return new SuperLinkID ( p r op e r t i e s . getProperty ( key ) ) ;

}

Snippet 5.6: The convenience method getID from RuleProperty.

RuleProperty

Rules can make use of an information container called RuleProperty where
all information about id’s and settings can be retrieved. All this information
is stored in a properties file. An example of such a file can be seen in
Snippet 5.5.

RuleProperty also contains a number of convenience methods that con-
vert the retrieved data to the wanted type. E.g. when trying to retrieve
the time sensor id property from the file in Snippet 5.5 using the getID

method, the returned value is a SuperLinkID with the value time. The getID
method is shown in Snippet 5.6.

5.5 GoalHandler

The job of the GoalHandler is to deliver the next goal to the planner. The
GoalHandler ensures flexibility, but the basic implementation delivered with
the framework should cover most needs. Before describing the goal handler
in detail it is necessary to examine the goals.

5.5.1 Goal

The Goal class is basically described by three fields:

• goalState: A goal state field which defines the actual goal.
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• desire: The desire level which refers to how much this goal wants to
be reached, in other words, the desire of this Goal to become the goal
of pathfinding.

• origin: This field connects the goal to a requester in the form of a
SuperLinkID.

All these fields are of course private and only accessible through proper
getter-methods.

To ensure that general use cannot alter the goal after it is instantiated,
and to ensure thread safety, it is implemented as immutable. As all the fields
of the goal are immutable themselves, immutability was easily archived.

Goals also implement the Comparable interface. This makes the desire
levels of goals determine their importance in the goal handler by default.
This can be overruled by a client, if it implements its own Comparator and
passes it along to whatever container holds the goals.

By implementing goals this way, any goal can be represented, no matter
what the task.

5.5.2 GoalHandlerEngine

The basic implementation of the GoalHandler interface included in the frame-
work, is the GoalHandlerEngine. The GoalHandlerEngine also extends
the SidiousQueue. (The SidiousQueue is described in Section 5.8.3.) It
gets a request for a goal from the blackboard. This request, which passes
a SuperLinkID along to identify the originating requester, is placed on the
queue. This then wakes the queue thread and processing begins. It uses the
rule engine to extract goals from the rules. The rule engine is described in
Section 5.8.4. These goals are then added to a priorityqueue, which then
sorts them, and, as shown in Snippet 5.7, the top priority goal is ”peeked”
from the queue. This goal is then delivered to the blackboard for further
processing.

5.6 The Planner

This section describes how the different parts that comprise the planner
and parts used by the planner have been implemented. The Planner class
consists of three inner classes that all extend the SidiousQueue, which will
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public Goal getTopPrior i tyGoal ( SuperLinkID id ) {
RuleEngine ru leEngine = Repos i tory . getRuleEngine ( ) ;
Prior ityQueue<Goal> queue = new Prior ityQueue<Goal>( ru leEngine

. ext rac tGoa l s ( id ) ) ;
i f ( queue == null ) {

return null ;
}
Goal returnGoal = queue . peek ( ) ;
. . .
return returnGoal ;

}

Snippet 5.7: getTopPriorityGoal from the GoalHandlerEngine

public interface Graph {
public Co l l e c t i on <Edge> getEdges ( Vertex v ) ;
public Vertex getSourceVertex ( ) ;
public Vertex getGoalVertex ( ) ;
public void setApproximateGoal ( Vertex v ) ;
public SuperLinkID get Id ( ) ;

}

Snippet 5.8: The Graph interface

be described in Section 5.8.3. These queue up elements for asynchronous
processing by the three main parts of the planner: the GraphFactory, the
Pathfinder, and the PlanGenerator.

5.6.1 Graph Interface

The most essential part needed to search for a shortest path is the graph.
This is implemented as an interface, only containing a few necessary functions
to leave the rest of the abstract data type open for framework extenders to
modify. To make it even more flexible the implementation of the vertices and
edges are also kept open to modify. The Graph interface is shown in Snippet
5.8.

5.6.2 GraphFactory

The responsibilities of the static factory GraphFactory is to construct specific
graphs. In the factory, graphs are built with only a heuristic, a source vertex,
and a goal vertex. The reason for the graphs not containing more vertices
is because, the remaining vertices will be calculated on-the-fly, but more on
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public synchronized void update (Edge edgeToPredecessor , double co s t ) {
a s s e r t co s t >= 0 : ”The co s t was l e s s than n i l : c o s t = ” + cos t ;
a s s e r t edgeToPredecessor != null : ”The edgeToPredecessor was nu l l ” ;
i f ( co s t < costCandidate ) {

this . edgeToPredecessor = edgeToPredecessor ;
costCandidate = cos t ;
l o gg e r . debug ( this ) ;

}
}

Snippet 5.9: The update method from AStarVertex.

this later. When the graph is constructed it is handed back to the planner
for further processing.

5.6.3 AStarGraph

The framework already contains an implementation of the Graph interface,
the AStarGraph. This graph is implemented such that when it is first con-
structed, nothing but the source vertex and the goal vertex is present. Then
whenever the graph is asked for the edges of a specific vertex, the edges and
their end point vertices are created on-the-fly. First a description of vertices
and edges used in the A* graph implementation.

AStarVertex The vertices are implemented such that they contain a cost of
getting to them, a heuristic value to store their calculated heuristic, and
a predecessor edge used to store the edge to the vertex preceding it on
the shortest path from the source to the vertex itself. The AstarVertex
contains a method to update the predecessor edge. this method is called
update and the implementation of it can be seen in Snippet 5.9. As
can be seen in that Snippet there are two assert statements which are
used for ensuring against things like negative edges.

AStarEdge The edges of the graph contain a step in which information about
the setting of the system setpoints is stored (See Section 5.6.9). This
information is stored to maintain information about what caused the
state change represented by this edge.

The A* graph implementation maintains a list of already visited vertices.
This list is maintained to ensure that no system states are represented more
than once. The implementation does not maintain any list of edges. This
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synchronized Vertex getVertexFromState ( State s t a t e ) {
i f ( s t a t e == null ) {

throw new I l l ega lArgumentExcept ion (
”Cannot c r e a t e a Vertex from nu l l ” ) ;

}
AStarVertex newVertex = new AStarVertex ( s ta te , h e u r i s t i c . h ( s t a t e ) ) ;
int index = v e r t i c e s . indexOf ( newVertex ) ;
i f ( index >= 0) {

Vertex returnVertex = v e r t i c e s . get ( index ) ;
return returnVertex ;

} else {
boolean su c c e s s = v e r t i c e s . add ( newVertex ) ;
i f ( ! s u c c e s s ) {

l o g g e r . e r r o r ( ”Vertex ” + newVertex
+ ” was not added to l i s t o f v e r t i c e s ” ) ;

}
return newVertex ;

}
}

Snippet 5.10: The getVertexFromState method from AStarGraph.

is because only edges potentially part of a shortest path are interesting.
These potential edges are stored in the vertices themselves in the previously
mentioned predecessor edge field.

The on-the-fly calculation of edges and vertices is done by calculating the
consequence of each possible step from the current vertex. How these steps
are retrieved and the mentioned consequence is calculated, is described in
Section 5.6.9 where Step is explained. For each possible step s, the conse-
quence of applying s to the state the vertex V represents. Then the method
getVertexFromState, seen in Snippet 5.10, is used to check if the new state
is already represented by another vertex in the graph, if this is the case it
returns that vertex, if not a new vertex is created and added to the list
of vertices in the graph. This found vertex is then used as the end point
when creating an edge from V. The Snippet 5.11 shows the above described
calculation.

5.6.4 Heuristic

The heuristic is, as the other parts, implemented as an interface to maintain
flexibility. The reason for keeping the heuristic flexible is that the imple-
mentation is closely related to how the rules work. Furthermore, it is an
integral part of the calculation time reduction. Some ideas for approaches to
the heuristic can be seen in Section 6.3.5 in the Framework Extension chap-
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public Co l l e c t i on <Edge> getEdges ( Vertex v ) {
. . .
for ( Step step : poss ib leNewSteps ) {

State s t a t e = step . consequence ( o ldSta t e ) ;
Vertex newVertex = getVertexFromState ( s t a t e ) ;
double co s t = ca l cu l a t eCo s t ( o ldState , s ta te , s tep ) ;
Edge newEdge = new AStarEdge (v , newVertex , step , co s t ) ;
edgesForV . add (newEdge ) ;

}
. . .

}

Snippet 5.11: The on-the-fly calculation of edges and vertices from
AStarGraph.

ter. The heuristic is one of the parts that can, and must, be tweaked when
optimizing the framework for any task, not just the greenhouse extension.

The parts used in the path-finding algorithm have been explained, now
its time to look at the Pathfinder itself.

5.6.5 Pathfinder

The pathfinder algorithm was implemented as a strategy pattern. This en-
ables system with the flexibility to interchange the underlying algorithm.
However, the best-suited algorithm for traversing a graph fast is the A* al-
gorithm. (See Section 5.1.4 for a description of the algorithm) As such, the
only strategy implemented for the pathfinder is the AStarAlgorithm class.

AStarAlgorithm

The A* algorithm is implemented using a PriorityQueue to represent the
open list. In this queue, vertices are prioritized with regard to the sum of their
cost and calculated heuristic. The AStarVertex class, that represent the
vertices in the graph, implements the Comparable interface, which enables
the priority queue to prioritize the vertices without further interference. The
closed list, that is maintained to keep track of which nodes have already been
visited, is implemented by an ordinary List implementation.

To start up the algorithm the source node is placed on the open list, and
then a series of actions are performed:

1. Remove the vertex V with the lowest priority from the priority queue.
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2. Check if V is the goal vertex. Exit if it is.

3. Retrieve all edges that emanate from V.

4. For each edge E

(a) Add the weight of the edge to the cost of E.

(b) Retrieve the end point vertex U, of the edge, with the calculated
new cost.

(c) Call the update method If the new cost is lower than the already
stored cost, the predecessor edge is set to E.

(d) If the end vertex is not on the closed list it is added to the open
list.

5. Start over from step 1.

The implementation of the above enumeration posed no greater challenges
and can be seen in its entirety in Snippet 5.12.

The check for equality is actually checking for partial equality. The reason
for this is that the goal state is retrieved from a Rule. This rule does not
necessarily possess knowledge about all the different state descriptors in the
current environment. The check itself is actually performed by the state
itself, which is the subject the following section.

5.6.6 State

To adhere to the philosophy of flexibility State is an interface open for
implementation by users of the framework. Snippet 5.13 shows the interface.
Some basic rules for how states must be implemented do apply. A State

represents a snapshot of the environment. This can be in the form of a list
of state descriptors. The state descriptors or SensorInput are the subject
of Section 5.8.2. These state descriptors are an important part of a method
called impact. The input parameter for the impact method is a list of
states. The method must from the list of states and the state itself calculate
a the combined or resulting state. This can be done through one of many
statistical methods like calculating the average of each sensor input. This
method is important for use in the planner when, the consequence of a Step

is calculated. The Step class is described in Section 5.6.9.
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private void jAStar (Graph graph ) {
Co l l e c t i on <Vertex> c l o s e dL i s t = new ArrayList<Vertex >() ;
Queue<Vertex> openList = new Prior ityQueue<Vertex >() ;
Vertex currentVertex ;
Vertex goa lVertex = graph . getGoalVertex ( ) ;
Co l l e c t i on <Edge> edges = null ;
openList . o f f e r ( graph . getSourceVertex ( ) ) ;
int vertexCount = 0 ;
while ( ! openList . isEmpty ( ) && ! c an c e l l e d ) {

currentVertex = openList . p o l l ( ) ;
SidiousOutput . g e t In s tance ( ) . addVertex ( currentVertex ) ;
i f ( currentVertex . p a r t i a l l yEqua l s ( goa lVertex ) ) {

graph . setApproximateGoal ( currentVertex ) ;
break ;

}
edges = graph . getEdges ( currentVertex ) ;
vertexCount += edges . s i z e ( ) ;
for (Edge edge : edges ) {

Vertex endVertex = edge . getEndVertex ( ) ;
double sum = edge . getCost ( ) + currentVertex . g ( ) ;
endVertex . update ( edge , sum ) ;
i f ( endVertex . g ( ) >= Double .MAX VALUE) {

throw new I l l e g a l S t a t eEx c ep t i o n (
”Cost exceeded Double .MAX VALUE value ” ) ;

}
i f ( ! openList . conta in s ( endVertex )

&& ! c l o s e dL i s t . conta in s ( endVertex ) ) {
openList . o f f e r ( endVertex ) ;

}
}
c l o s e dL i s t . add ( currentVertex ) ;

}
}

Snippet 5.12: The jAStar method.
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public interface State {
public State impact ( Co l l e c t i on <State> s t a t e s ) ;
public boolean sameStateSpace ( State other ) ;
public boolean pa r t i a l l yEqua l s ( State s t a t e ) ;

}

Snippet 5.13: The State interface

To make sure that states are not altered, as they are used in vertices
which represent a given state, and to ensure thread-safety, it is important
that State is implemented as immutable.

5.6.7 Plan

A Plan is the end result when the Planner has finished its calculations. A
plan is associated with a specific requester through the stored SuperLinkID.
Besides that, it contains a Stack where the Step elements, which comprise
the plan, are stored. It is accessed as a Last In First Out (LIFO) stack
because when the plan is generated in the PlanGenerator the steps are
added in reverse order. When the requester needs a step from the plan it can
just pop the top element from the stack. When there are no more elements
on the stack, the plan has been performed.

5.6.8 PlanGenerator

To construct the plan the graph has to be traversed backwards, from goal
to source. This is because each vertex on the path contains an edge to the
vertex immediately preceding it. This is the job of the PlanGenerator. It
traverses the graph backwards and extracts the steps one by one. They are
added to a plan as they are extracted . This plan is then returned.

5.6.9 Step

A Step represents a ”state changer”. The step is a collection of all the
system adjustables which each contain a setting. (See section 5.3 for more
on adjustables)

The Step class contains two, for the planner, very important methods:

• getSteps: This method, which is depicted in its entirety in Snippet
5.14, generates a list of all possible new states with this step as the
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public Co l l e c t i on <Step> getSteps ( ) {
Co l l e c t i on <Step> s t ep s = new ArrayList<Step >() ;
ArrayList<Adjustable> proxyAdjustables = new ArrayList<Adjustable >(

ad j u s t ab l e s ) ;
for ( Adjustable adj : ad j u s t ab l e s ) {

proxyAdjustables . remove ( adj ) ;
Co l l e c t i on <Adjustable> r e s u l t i n gAd ju s t ab l e s = adj

. poss ib l eAdjustments ( ) ;
for ( Adjustable newAdj : r e s u l t i n gAd ju s t ab l e s ) {

proxyAdjustables . add (newAdj ) ;
s t ep s . add (new Step ( proxyAdjustables ) ) ;
proxyAdjustables . remove (newAdj ) ;

}
proxyAdjustables . add ( adj ) ;

}
s t ep s . add ( this ) ; // ” v i r g i n ” s t ep
return s t ep s ;

}

Snippet 5.14: The getSteps method of Step.

source. This is done by generating new adjustables, with altered set-
tings. For each new possible setting of an adjustable, a step is gener-
ated. Lastly an unaltered step is added to the list. This is done because
some implementations of adjustables can result in changes that can not
be fulfilled in a single timestep.

• consequence: Snippet 5.15 shows a method which is used to calculate
the consequence of this step on the current state. That is the resulting
changes to the environment caused by the adjustable settings. This
could be the heater adjusting the temperature in the environment. The
consequence of each adjustable is calculated and stored in a list which
is then combined into on single state by using the impact method,
described in Section 5.6.6, on the state.

A step also contains an explanation which is a description of why this
step was taken. These explanations are set by the RuleEngine during the
calculation of the edge weigths in the graph. The following section explains
the explanations.

5.7 Explanatory Capabilities

The system is equipped with a simple way of reasoning about the choices
made during generation of a plan. As described in the previous sections,
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public State consequence ( State s t a t e ) {
i f ( l o gg e r . isDebugEnabled ( ) ) {

l o g g e r . debug ( ” consequence ( State s t a t e=” + s t a t e + ” ) − s t a r t ” ) ;
}
i f ( s t a t e == null ) {

return null ;
}
Co l l e c t i on <State> s t a t e s = new ArrayList<State >() ;
for ( Adjustable adj : ad j u s t ab l e s ) {

s t a t e s . add ( adj . consequence ( s t a t e ) ) ;
}
State r e tu rnSta t e = s t a t e . impact ( s t a t e s ) ;
i f ( l o gg e r . isDebugEnabled ( ) ) {

l o g g e r . debug ( ” consequence ( State s t a t e=” + s t a t e
+ ” ) − end − r e turn value=” + re turnSta t e ) ;

}
return r e tu rnSta t e ;

}

Snippet 5.15: The consequence method of Step.

the system evaluates all the rules provided by the requesting client when the
pathfinder algorithm searches for through the graph. When these evaluations
are made, the system stores the rules and their associated desire values, as
ExplanationEntry objects, in the designated Explanation. This object is
stored on the Step object attached on each Edge in the graph. This design
enables the system to retrieve the rules and their calculated desire for each
step in the finished plan. Since it is the rules with the lowest desire-for-
change that dictates the direction of the search, these values reveal the rules
that ”decided” each step; hence the reason for each step. Snippet 5.16 shows
how the explanations are retrieved in the RuleEngine.

Explanation The Explanation object is a simple container in which to
store and retrieve explanation entries. The class is shown in Snippet
5.1 on page 41.

ExplanationEntry The ExplanationEntry object wraps the name of a
rule along with its desire value.

Both classes are immutable to facilitate free sharing among threads. They
can be found in the dk.deepthought.sidious.explanation package.
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double eva luateRule s ( Co l l e c t i on <Rule> ru l e s , State current , State next ,
Step step ) {
. . .
L i s t<ExplanationEntry> exp lanat i ons ;
ExplanationEntry entry ;
exp lanat i ons = new ArrayList<ExplanationEntry >() ;
for ( Rule r u l e : r u l e s ) {

double d e s i r e = ru l e . d e s i r e ( current , next , s tep ) ;
eva lua t i on += de s i r e ;
entry = new ExplanationEntry ( r u l e . getExplanat ion ( ) , d e s i r e ) ;
exp lanat i ons . add ( entry ) ;

}
s tep . se tExp lanat ion (new Explanation ( exp lanat i ons ) ) ;
. . .

}

Snippet 5.16: The retrieval of the Explanation from the RuleEngine.

5.8 General Components

This section contains implementation descriptions of the more general com-
ponents used throughout the framework.

5.8.1 SuperlinkID

As described in Section 4.4.4, the SuperLinkID encapsulates a unique iden-
tifier in the system. The class is implemented as an immutable container of
a String instance; it is a simple decoration of the string. The reason for
encapsulating the string was to keep the implementation of identifiers of all
components flexible and in one place. The hashCode and equals methods
have been overridden to facilitate instances being equal on the encapsulated
string, and not on the enclosing object reference.

5.8.2 SensorInput

The state descriptors or SensorInput are the ones that are changed based
on consequence calculations. A sensor input consists of two fields, an id and
a value. To encapsulate the SuperLinkID of the sensors, the SensorInput

class provides a static factory method, from which it is possible to create a
new instance with a new value but with the same id. This is important when
calculating new states for use in the planner.

Besides the check whether two sensors are identical, which is used when
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private class Interna lThread implements Runnable {
public void run ( ) {

while ( true ) {
T item = null ;
synchronized ( queue ) {

while ( queue . isEmpty ( ) && ! in t e r rup t ed ) {
try {

queue . wait ( ) ;
} catch ( Inte r ruptedExcept ion e ) {

return ;
}

}
i f ( i n t e r rup t ed ) {

return ;
}
item = queue . remove ( 0 ) ;

}
proce s s ( item ) ;

. . .
}

Snippet 5.17: The internal thread class of SidiousQueue.

checking state equality, it was also necessary to check whether two sensors
have the same SuperLinkID. This functionality is used when calculating Step

consequences and State impacts.

5.8.3 SidiousQueue

The SidiousQueue is a queue used to handle asynchronous requests through-
out the system. A thread handles the entire processing. The thread waits
until an item is enqueued before it then dequeues the item and starts pro-
cessing it. This waiting is upheld by a lock object which is the queue itself.
The internal thread is shown in Snippet 5.17.

Note that the wait statement is surrounded with a while loop checking
whether the queue is empty or not. This is done to avoid processing to
start without any items in the queue. This could happen if a notifyAll call
is made, which results in all waiting threads to awaken. To avoid this the
enqueue waking of the thread is done using the notify method instead of
notifyAll on the lock object.

Another important thing to note is that enqueueing and dequeueing is
not possible at the same time, but processing and enqueueing is however
possible. This allows for a sequential enqueueing while the queue thread is
”busy” processing an item.
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public Co l l e c t i on <Goal> ext rac tGoa l s ( SuperLinkID reques te r ID ) {
PlanRequester r e que s t e r = Repos i tory . getBlackboard ( ) . getRequester (

reques te r ID ) ;
i f ( r e que s t e r == null ) {

return new ArrayList<Goal >() ;
}
Co l l e c t i on <Rule> r u l e s = r eque s t e r . getRules ( ) ;
Co l l e c t i on <Goal> r e t u rnCo l l e c t i o n = extractGoalsFromRules ( r u l e s ) ;
. . .
return r e t u rnCo l l e c t i o n ;

}

Snippet 5.18: The retrieval of goals in the RuleEngine.

As seen in the above description the SidiousQueue is actually very similar
to the producer-consumer pattern.

Because this class has multiple uses and the only thing that differes is the
processing; the process method is abstract. The SidiousQueue is used in
four different variants: the GoalHandler is a SidiousQueue, and the Planner
class contains three inner classes which extend the SidiousQueue.

5.8.4 RuleEngine

The RuleEngine is the liaison between the rules and the rest of the system.
It is an interface in case the implementation has to be replaced. However,
the standard implementation that is included in the framework will do for
most extensions.

The rule engine has two main tasks; which are extracting the goals from
the rules and evaluating the combined desire of the rules. The first important
task of the RuleEngine is extracting the goals from the rules. This is done
when needed by the goal handler. It works by first retrieving the rules from
the requester and then asking each rule for their goals. This interaction
can be seen in Snippet 5.18. The rules themselves handle the creation and
formulation of goals as will be described in the Framework Extension chapter.

The second task of evaluating the combined desire of the rules is accom-
plished by asking each rule for their desire given three things; two states and
a step. The two steps are connected in such a way that the step applied to
the first state yields the second state. The rules then return a desire based
on this and the RuleEngine returns this value.
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5.8.5 ServiceEngine

When using services, like the planner framework, as plugins in a project it was
thought as a good idea to have a central place to ask for the assistance from
other plugin services. The ServiceEngine was thought to be the mediator
of such plugin services when the project was extended into the Avian Game
Platform.3 Inside the framework it is used as a means to get hold of the
environment state and other tasks that involve outside help from elements
such as a PlanRequester.

5.9 Development Milestones and History

This section concerns itself with the major implementation milestones, as
well as the major refactorings, during development.

5.9.1 In the Beginning. . .

During the startup the program was very similar to IntelliGrow with regards
to the different components. There were three kinds of components to deliver
setpoints and costs.

5.9.2 Stepping Away From Intelligrow

To get rid of the conflicts that where possible in the IntelliGrow applica-
tion it was decided that instead of setpoints some other representation was
needed. This is where the climatic state came into being. Instead of directly
calculating the setpoints their impact on the environment would have to be
calculated. This was the first step, albeit small, away from IntelliGrow.

5.9.3 There and Back Again - A Gamecoders’ Tale

The first major refactoring of the code was when the project was adopted
into the Avian Game Platform of Rising Tide. The system was to be used
to control the behavior of the non-player agents in the game.

3The system was bought by Rising Tide in mid November 2006. The company devel-
oped a children’s computer game in Java.
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Refactoring to game

The refactoring to the game required a complete rethinking of the design.
This was where the brilliant idea of rules came into play. Instead of having
separate components for cost, restrictions, etc. a general abstraction was
needed. That general abstraction was the rule; it encapsulates the general
idea behind the components nicely. The transformation was fairly easy, since
each component was a rule in disguise anyway. This refactoring also implied
the concurrency model to be revised; especially the passing of messages was
reworked. Clearly, a bunch of other minor tweaks had to be performed to fit
the system to its new assignment.

Re-Refactoring to greenhouse

To get the framework back on track for greenhouse calculations, the previ-
ously mentioned components were then refactored to rules. The simplicity
of this refactoring made the flexibility of the framework, as it is now, very
obvious. Some leftovers of the game still persist in the current system. How-
ever, the design seemed to justify their survival. Among the survivors are
the rule engine and the service engine.

5.10 Implementation Details

The system utilizes some of the features added to the JavaTM5.0 platform -
such as annotations, the Queue and PriorityQueue classes, and the for-each
iteration idiom - and therefore will not compile with previous versions of the
platform.

The system is developed and tested on MS Windows XP Professional
Version 2002 Service Pack 2, and has been continuously tested on a Debian
GNU/Linux 3.1 distribution; acting as build machine, see Section 7.3 for
details.

5.10.1 Requirements for Running

Following is the requirements for running the system.

• JavaTMJRE 5.0 (or later)
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5.10.2 Requirements for Development

Following is the requirements for further development of the system.

Requirements to compile:

• JavaTMJDK 5.0 (or later)

• JUnit 3.8 (or later) *

• Log4J 1.2.13 (or later) *

• Commons Logging 1.1 (or later) *

• JCIP Annotations[24] *

Auxiliary requirements for development:

• Ant 1.7 (or later)

• Jakarta ORO 2.0.8 *

• Commons Net 1.4.1 *

• Java2HTML 5.0 *

• EMMA 2.0 (or later) *

• JDepend 2.9.1 (or later) *

• Java NCSS 28.49 (or later) *

All requirements annotated with an * are bundled with the project in the
vendor/lib or resources directories. Appendix B accounts for the use of
each library and explains where to obtain it.

The required libraries are handled by the enclosed Ant script, and as such,
the project requires no other system setup or altering of system classpath,
besides installation of Ant.

5.11 Code Quality

The following explains some of the decisions made in this project regarding
the quality of the code base.
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5.11.1 Overloading

Overloading has generally been avoided throughout the project. Wherever
possible, overloading of constructors has been replaced by static factory meth-
ods instead, and overloading of instance methods has been avoided com-
pletely. This decision was based on the notion that overloading seems coun-
terintuitive. The selection among overloading methods is static, made at
compile time, as apposed to overriding, for which the selection is dynamic,
made at runtime, which renders overloading somewhat counterintuitive.

5.11.2 Overriding

All classes inherit methods from java.lang.Object. Most classes should
also override at least some of these methods.

All classes representing value objects have had their equals and hashCode

methods overridden if necessary. Several algorithms used in the project
rely on objects being equal on more that just the object reference. The
PlannerEngine e.g. uses a HashMap to map a SuperLinkID to a PlanRequester.
If SuperLinkID did not override equals this mapping would fail miserably.
This is because the hashCode method relies on that equal objects has the
same hash code.

Furthermore, all classes have had their toString method overridden.
This serves primarily to make the classes more pleasant to use, but also
simplifies writing log messages significantly.

5.11.3 Code Conventions

The entire code base generally adheres to the Code Conventions for the
JavaTMProgramming Language.4 Especially all variable, method, and class
names adhere strictly to the Naming Conventions. Throughout the system,
every method and class name has been carefully thought through, and is
chosen to make the most sense relative to its context.

5.11.4 Documentation

All packages, classes, interfaces, methods, and instance variables are doc-
umented in their respective Javadoc. Methods implementing interfaces or

4See: http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
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abstract methods, or methods overridden from java.lang.Object are only
documented where the methods are described. This is to avoid the dupli-
cate work of maintaining the same documentation in more that one place.
Appendix A.2 describes where the generated Javadoc is located.

5.11.5 Crash Early

The system is developed to crash early in case of failures. This is managed
by catching all checked exceptions, plus a couple of unchecked ones as well,
and at the very least writing to the log before throwing a new exception or
rethrowing the original. If the input parameters to a method are seriously
erroneous, e.g. passing a null reference, the method awards this by writing
the error to the log and throwing an IllegalArgumentException.

5.11.6 General

In general, the system is developed to be as resilient as possible. Some of the
mechanisms used to promote this goal are:

• Wherever possible instead of returning null, methods will return an
empty array.

• Wherever possible interfaces are used to define types, not the imple-
menting classes.

• Functionality and data are not duplicated, but kept in the one place
where it logically belongs.

• Encapsulation is enforced; all member variables are private and can
only be accessed through methods.

• All non-used variables, instance as well as local, are completely re-
moved.

Furthermore, several static code analysis tools have been applied to mon-
itor the quality of the code base. The results of these tools can be found
through Appendix A.4.
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5.11.7 Look Ma, No Warnings!

A final note is that compiling the sidious project does not generate any
warnings from the compiler - despite the fact that the compiler is running in
the most pedantic mode possible. Through the Ant script, the compiler is run
with -Xlint:all flag, which checks for software ”lint” and then generates a
warning if any such lint is present in the code. Examples of lint are the use
of deprecated methods, or finally clauses that cannot complete normally.5

5See: http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/javac.html for a com-
plete description.
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Chapter 6

Framework Use and Extension

”Know where to find the information and how to use it - That’s
the secret of success.”

— Albert Einstein (1879-1955)

”Application Development with the Planner Framework” is the sub-title
of this chapter; this is the how-to chapter. How to use the framework is
addressed in a tutorial section. For developers that need to extend, augment,
or maintain the framework, a section is concerned with greenhouse specific
tasks, and another section is dedicated to the traps and pitfalls in extension
development.

6.1 Tutorial

The framework is designed to be used as a service. In principle, only one
method is ever needed to be called by a client to have a viable plan delivered;
thats the requestPlan method. This section explains the prerequisites for
attaining that goal.

6.1.1 Prerequisites

The driving forces of the planner are the rules and adjustables. They describe
the domain of the clients; what can be manipulated by the planner and how
to do it. Clients of the framework must therefore implement proper rules
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and adjustables accordingly. Furthermore, two additional concepts are of
importance; namely the notion of state and the requester of a plan.

Rules

Clients must implement rules describing the constraints of the domain. The
concepts of rules are described in section 4.1.3. All rules implemented must
extend the abstract Rule class, which besides containing several convenience
methods, forces the extending class to have certain functionality expected
by the framework. The API of the Rule class can be seen in Snippet 5.3 on
page 49. The abstract methods should behave as follows:

• getGoals should return the immediate whishes of the rule. This means
returning the objective of the concept the rule describes, appended with
a desire for that objective.

• desire should return a measure for how ”happy” the rule would be, if
it were to change state from currentState to newState.

The rules already implemented for the greenhouse can serve as guidelines
for developing new rules, these are described in Section 6.3.2. As an example,
if the client was a chess game, the basic rules would be:

• Rules describing the movement constraints of the chess pieces (a rook
can move in a straight line, horizontally or vertically)

• Rules describing the boundaries of the chessboard (64 squares)

• Rules describing the goal of the game (how to win)

Section 6.4.2 covers in greater detail how to deal with the complexity of
writing rules and their desire functions.

Adjustables

For the planner to be able to devise a plan, it must have some way of adjusting
the state of the environment. This task is handled by classes implementing
the Adjustable interface. The adjustables of a client describes the possible
ways that the client can manipulate its environment. Snippet 6.1 shows the
Adjustable method set.

The following functionality is expected of implementations of Adjustable:



6.1. TUTORIAL 73

public interface Adjustable {
public State consequence ( State s t a t e ) ;
public Co l l e c t i on <Adjustable> poss ib l eAdjustments ( ) ;
public SuperLinkID getID ( ) ;
public double g e tS e t t i ng ( ) ;

}

Snippet 6.1: The Adjustable interface.

• possibleAdjustments should return all possible settings the adjustable
can enter in the subsequent step. This is represented as a collection
of new instances of the adjustable with the new setting. For example,
with the chess game in mind, a lonely pawn would return only one new
adjustable; one step forward. Actually, it would return two adjustables;
also the adjustable for not doing anything at all.

• consequence should return the consequence of applying the imple-
menting adjustable to the given input state. In a chess game, if a
pawn is standing right diagonally in front of an opposing piece, the
consequence of the ”one-step-diagonally-forward” adjustable would be
taking the opposing piece.

• getSetting should return the setting of the adjustable.

To reuse the example from above, the adjustables for a chess game would
be the position of each chess piece. More accurately, they would be the means
of which to manipulate the position; i.e. it is possible to move a chess piece
(adjust its position), according to its movement rules.

PlanRequester

The client of the framework must implement the PlanRequester interface.
This interface guarantees the framework certain methods are available on the
requesting client. Snippet 6.2 shows the PlanRequester interface.

The methods of the interface are primarily self-explanatory. However, a
quick outline would be:

• setPlan is the callback hook for the framework to deliver the finished
plan.

• getState should return the current state of the environment relative
to the requester.
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public interface PlanRequester {
public Co l l e c t i on <Adjustable> ge tAdjus tab l e s ( ) ;
public Co l l e c t i on <Rule> getRules ( ) ;
public State ge tS ta t e ( ) ;
public SuperLinkID getID ( ) ;
public void setPlan ( Plan plan ) ;

}

Snippet 6.2: The PlanRequester interface.

• getRules, getAdjustables, and getID returns the rules, adjustables
and the id respectively, associated with the requester.

Henceforward, when referring to a client of the framework, it will implic-
itly mean an implementer of the PlanRequester interface.

State

The State interface is another valuable part of the framework. It encap-
sulates the environment of the client, which is quantified into a set of state
descriptors called sensor input, implemented by the SensorInput class. A
sensor input holds an id and a value. In the domain of the greenhouse, a
sensor input is some sensor from the greenhouse, and in the chess example,
it would indicate whether a square is occupied or not. Snippet 5.13 on page
58 shows the State interface.

The implementation class should behave as follows:

• impact takes a set of states and calculates the aggregated impact of
applying the states to the current state. (See section 6.3.3 for a de-
scription of the implemented ClimaticState.)

• sameStateSpace takes another state and verifies if the two states be-
long to the same state space.

• partiallyEquals takes an input state and checks whether the state
contains all state descriptors of the input state.

When all the described prerequisites are in place, it is time to fire the
machinery up. The following section deals with how to use the framework.
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6.1.2 Getting a Plan

If the previously described necessities behave as prescribed, the framework
should respond to a request for a plan with a reasonable candidate plan.
The delivered plan will consist of a sequence of steps to be carried out by
the client. (See section 5.6.9 and 5.6.7 for a description of steps and plans
respectively)

A client of the system should, as explained in the previous sections, im-
plement the PlanRequester interface. When submitting a request for a plan
to the system, the client provides a reference to itself along with the request.
This reference is used by the system to query for the rules and adjustables,
and the current state of the environment, of the client. It is furthermore
used as a callback hook for delivery of the finished plan. The entire client
workflow is comprised of only three steps:

1. call the requestPlan method

2. respond to the requests for data

3. receive the plan when it is delivered

It should be noted that the framework does not impose any directions of
how to implement a plan once it has been delivered. The client is free to
dispense with the plan as it sees fit.

6.2 How-To’s

This section gives quick guidelines to checking out the project from its repos-
itory and importing it into an IDE. This how-to section is given to make it
simple and straightforward to get the framework up-and-running, and verify
the correctness and viability of the system.

6.2.1 Check Out from Repository

The project lives in a Subversion (SVN) repository on a server at the Univer-
sity of Southern Denmark. The following describes how to check the project
out from that repository. The description assumes a viable Subversion client
is installed.

Performing a checkout of the project is done by changing to the directory
where the project should be placed and executing the checkout command.
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>cd workdir

>svn co project_path

Where project path is the path of the repository. This can be found in
Appendix A.1. When the project is retrieved from the repository, it is time
to get it into an IDE.

6.2.2 And Into an IDE

The following briefly describes the import of the project into some of the
currently available IDEs.

Eclipse and Friends

The framework has been developed using the Eclipse IDE1. The project is
bundled with an Eclipse .project file and .classpath file, and is therefore
easily imported into eclipse, using the Import Wizard.

The project is similarly imported into the IBM Rational Software Modeler
and the IBM Rational Software Architect IDEs.

NetBeans and Friends

The project has been successfully imported into the NetBeans IDE, and the
Sun Java Studio Enterprise IDE. This can be achieved by using the IDE’s
New Project wizard, and choosing ”Java Project with Existing Ant Script”
or ”Java Project with Existing Sources”.

6.3 Greenhouse Extension

This section defines and explains the parts of the framework that are relevant
when extending with respect to the greenhouse. The section also explains
the components that have already been developed for the greenhouse.

6.3.1 How to Extend

The greenhouse can be extended with new technology and discoveries as they
arise in the future. Most of it will be in the form of rules and setpoints. This

1The Eclipse IDE can be found at http://www.eclipse.org/
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is why the descriptions of the already implemented parts for the greenhouse
application in the following sections, can serve as additional guidelines for
further development. A kind of sandbox.

6.3.2 Rules

The rules used in the greenhouse extension are all, except PhotosynthesisRule,
not necessarily reflecting the real world. They are an attempt at demonstrat-
ing how it can be done. They are made without great domain knowledge and
may therefore not represent reality that well. In other words they are guessti-
mates at best. This does, however not detract from the value of the example
they all pose. They all demonstrate different approaches and ways of using
rules in the framework.

Another class exists that extends the Rule base class; the ConstrainingRule.
This class, however, solves a special problem, which will be addressed in Sec-
tion 6.4.3.

HeatExpensesRule

The HeatExpensesRule is a rule which is not goal oriented. The rule will
instead only influence the plan when it is being generated in the planner.
The way it works is when the temperature setpoint has a value that is higher
than the current temperature weight is added to the edge. The way this
weight is calculated can be seen in Snippet 6.3.

Determining the value of the edge weight is a simplified version. In a real
world situation, many other factors may come into play when determining
what generates heat expenses. Nevertheless, it is a good example of a rule
used to limit expenses.

MorningDropRule

The morning drop rule is a rule that uses the time of day to determine when
it has a high desire for change. This rule dictates the need for a temperature
decrease in the early hours of the day, then holding it for a duration and then
heating the greenhouse back to normal operating temperature again.

When the plan is being generated, it adds weight to the edges when time
is within the period where it operates. This results in, no matter which
rule ”won”, an attempt at keeping a low temperature. This illustrates very



78 CHAPTER 6. FRAMEWORK USE AND EXTENSION

public double d e s i r e ( State cur rentState , State newState , Step step ) {
. . .
Adjustable heate r = null ;
SensorInput temperature = null ;
. . .
double re turndouble = 0 ;
double d i f f = 0 ;
i f ( heate r != null && temperature != null ) {

d i f f = heate r . g e tS e t t i ng ( ) − temperature . getValue ( ) ;
}
i f ( d i f f < 0) {

re turndouble = 0 ;
} else i f ( d i f f < 5) {

re turndouble = ( d i f f / 5 ) ;
} else {

re turndouble = 1 ;
}
return re turndouble ;

}

Snippet 6.3: The desire function of HeatExpensesRule

well how rules can influence the choices made in the plan only when it is of
concern for the rule.

PhotosynthesisRule

The photosynthesis rule is making use of a model already built. The model
used is a, to Java, translated version, of the component used in Intelligrow.
This rule ensures that a photosynthesis rate of 80% or more is maintained.
This is done by adding weight if the plan tries to stray from the 80% rate.
The desire calculation, as can be seen in Snippet 6.4, is rather ineffecient.

This is because each time the rate has to be calculated it runs through
two loops with calculations to determine the maximum rate. This quickly
adds up to many calculations when a plan is generated. This problem is
described in greater detail in Section 6.4.

The rule is a prime example of how easy it is to use already built models
in the framework. It, however, also demonstrates one of the pitfalls that can
arise.

TemperatureRule

The temperature is governed by the TemperatureRule. This rule ensures
that the temperature stays inside the temperature boundaries. The bound-
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double calculateMax (double shade , double sun ,
ArrayList<ArrayList<Double>> matrix ) {

LeafPhotosynthes isModel model = new LeafPhotosynthes isModel ( ) ;
double max = 0 ;
for ( int temperature = T START; temperature < T END; temperature++) {

ArrayList<Double> i nne r = new ArrayList<Double >() ;
for ( int co2 = CO2 START; co2 < CO2 END; co2 += CO2 INCREMENT) {

double va l = model . c a l c u l a t e ( temperature , co2 , sun ,
GLASS FACTOR, SHADE FACTOR, shade ) ;

inner . add ( va l ) ;
max = Math .max( val , max ) ;

}
matrix . add ( inner ) ;

}
return max ;

}

Snippet 6.4: The PhotosynthesisRule maximum rate calculation.

aries are determined as the highest and lowest, for the plants, non-lethal
temperatures. Keeping the temperature inside the boundaries is done by
adding massive weight to edges that lead a plan outside the temperature
boundaries.

Another aspect of this rule is that it attempts to hold a mean temperature
within the greenhouse. In addition, if the temperature is getting close to
the boundaries, it will have a high desire valued goal, aiming for the mean
temperature.

This rule is a demonstration on how several related things can be com-
bined into one rule. The last rule that extend the Rule base class is the
ConstrainingRule; the description of this class is, however, postponed to
Section 6.4.3. How state is represented in the greenhouse extension is de-
scribed next.

6.3.3 ClimaticState

The implementation of the State interface for the greenhouse extension is
the ClimaticState. As required by the interface the implementation is
immutable.

The ClimaticState is an example of how methods only used within
the class is given ”package” (or default) visibility, to facilitate testing the
methods thoroughly. The class holds four such methods, which all are used
in the calculations done by the impact method:
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public State impact ( Co l l e c t i on <State> s t a t e s ) {
// Current implementation c a l c u l a t e s the average .
Cl imat i cState r e tu rnSta t e = average ( t oC l ima t i cS t a t eL i s t ( s t a t e s ) ) ;
r e tu rnSta t e = re tu rnSta t e . incrementTime ( ) ;
. . .
return r e tu rnSta t e ;

}

Snippet 6.5: The impact method of ClimaticState.

• sum: takes a climatic state and calculates the sum of the matching
sensors, which then are returned as a new climatic state.

• total: takes a list of climatic states and calculates the total sum of
the matching sensors. This is done recursively.

• average: takes a collection of climatic states and calculates the average
value of the matching sensors.

• toClimaticStateList: convenience method to convert the input states
to climatic states.

The impact method is the one used to combine several consequences into
one ClimaticState. The method is used when calculating each new state to
be represented in the graph. This method is also responsible for incrementing
time. Snippet 6.5 shows the impact method.

Another method used in ClimaticState is the partiallyEquals method,
which looks at the input state and determines whether or not it contains all
the SensorInput this ClimaticState contains. If that is the case the method
returns true, as the two states are then partially equal.

New ClimaticState instances are generated by setpoints when they cal-
culate consequences. Setpointe are the subject of the following section.

6.3.4 Setpoints

In the greenhouse domain, the adjustables are the setpoints. The concept of
setpoints is described in Section 1.1.1. To facilitate this, several implemen-
tations of the Adjustable interface have been developed.

A general feature of all implemented setpoints is that they are all im-
mutable, and contains an internal enumeration that holds the possible ad-
justments for that particular setpoint. The enumeration abstracts the di-
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rections and the increment-size of each setpoint; e.g., because of the servo
engine controlling it, a window can perhaps be opened 5% and closed 5%
at a time, so the enumeration of that window setpoint would contain two
instances, namely OPEN(5) and CLOSE(5). This is in fact exactly what the
implemented WindowSetPoint does. The following describes the individual
implementations in further detail.

CO2SetPoint

This is the abstraction of the CO2 setpoint in the greenhouse. The consequence
method of this setpoint works like this:

1. retrieves the CO2 sensor value from the input state

2. looks at the difference between its own setting and the retrieved sensor
value

3. adjusts the sensor value according to the maximum increase or decrease
capabilities per time-step

4. appends the new value to a constructed list, containing the other un-
touched sensors

5. constructs a new ClimaticState and returns it

HeaterSetPoint

This class represents a setpoint for the heater or thermostat in the green-
house. Remembering that increase in temperature result in a decrease in
relative humidity, the consequence method of this setpoint works like this:

1. retrieves the values of the temperature and humidity sensors from the
input state

2. calculates the difference between its setting and the retrieved temper-
ature sensor value

3. calculates the possible temperature change according to the approxi-
mated rate of change

4. appends the new value to a constructed list, containing the other un-
touched sensors
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public State consequence ( State s t a t e ) {
. . .
Co l l e c t i on <SensorInput> s en so r s = c l ima t i c S t a t e . ge tSenso r s ( ) ;
Co l l e c t i on <SensorInput> newSensors = new ArrayList<SensorInput >() ;
// When temperature increases , humidity decreases
for ( SensorInput input : s en s o r s ) {

i f ( input . getID ( ) . equa l s ( temperatureID ) ) {
double temperature = input . getValue ( ) ;
double de l t a = s e t t i n g − temperature ;
double newValue = temperature + t imestep ∗ FACTOR PER MINUTE

∗ de l t a ;
newSensors . add ( input . newInstanceWithNewValue ( newValue ) ) ;

} else i f ( input . getID ( ) . equa l s ( humidityID ) ) {
double decreaseFactor = decreaseFactor ( input . getValue ( ) ) ;
newSensors . add ( input . newInstanceWithNewValue ( dec reaseFactor ) ) ;

} else {
newSensors . add ( input ) ;

}
}
. . .

}

Snippet 6.6: The consequence method of the HeaterSetPoint

5. adjusts the retrieved humidity sensor value from the input state for the
temperature change

6. constructs a new ClimaticState and returns it

The primary part of the consequence method is shown in Snippet 6.6.

ScreenSetPoint

This setpoint is for controlling the sunsscreens in the greenhouse. The
consequence method of this setpoint works like this:

1. retrieves the irradiance sensor value from the input state

2. reduces the irradiance with the percentage the screens are closed

3. appends the new value to a constructed list, containing the other un-
touched sensors

4. constructs a new ClimaticState and returns it
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public State consequence ( State s t a t e ) {
. . .
double deltaTemperature = outsideTemperature . getValue ( )

− temperature . getValue ( ) ;
double deltaHumidity = outs ideHumidity . getValue ( ) − humidity . getValue ( ) ;
double newFactor = windowAreaPercentage ∗ ( s e t t i n g / 100)

∗ SystemSett ings . getTimestep ( ) ;
i f (Math . abs ( newFactor ) > 1) {

newFactor = Math . signum ( newFactor ) ;
}
double newTemperatureValue = temperature . getValue ( ) + deltaTemperature

∗ newFactor ;
newSensorList . add ( temperature

. newInstanceWithNewValue ( newTemperatureValue ) ) ;
double newHumidityValue = humidity . getValue ( ) + deltaHumidity

∗ newFactor ;
newSensorList . add ( humidity . newInstanceWithNewValue ( newHumidityValue ) ) ;

State r e tu rnSta t e = new Cl imat i cSta te ( newSensorList ) ;
return r e tu rnSta t e ;
. . .

}

Snippet 6.7: Excerpt from consequence method of the WindowSetpoint

WindowSetPoint

This setpoint represents the opening and closing of the windows in the green-
house. The consequence method of this setpoint works like this:

1. retrieves the values of the inside and outside temperature and humidity
sensors from the input state

2. looks at the difference between the retrieved inside and outside sensor
values

3. adjusts the inside sensor values towards the outside sensor values with
a factor depending on the window sizes

4. appends the new value to a constructed list, containing the other un-
touched sensors

5. constructs a new ClimaticState and returns it

The adjustment of the inside sensor values can be seen in Snippet 6.7
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6.3.5 GreenhouseHeuristic

The GreenHouseHeuristic is an implementation of Heuristic that is used
in the AStarAlgorithm. During the course of developing the greenhouse
extension the heuristic has been calculated in many different ways. Some of
the ways are explained below.

Rule Desires

Using the rules as a means for generating the heuristic value was the first
option tried. The heuristic for a vertex V was calculated by assuming a
direct edge from V to the goal vertex. This however gave rise to some
complications, because with few rules the heuristic value often ended up
close to zero for almost all vertices. The problem with a heuristic value close
to zero is that the algorithm ”loses its sense of direction” that is, it does not
search towards the optimal path, but rather just circling outwards. This can
severely damage performance because many more vertices are searched.

Euclidian and Normalizing

Another approach came with the emerge of the ConstrainingRule, which
is explained in Section 6.4.3. It is based on the Euclidian distance between
the states. The value returned from the Euclidian distance often amounted
to values far exceeding the value of the actual shortest path. That made this
approach seem like an unwise path because the heuristic would be inadmis-
sible. But by using the Euclidian distance from the source to the goal as a
divisor, the distance was normalized. This approach also yielded the, by far,
fastest calculation time. The code that calculates the euclidian distance can
be seen in Snippet 6.8

6.3.6 SystemSettings

A number of settings are needed throughout the system. These settings
are primarily related to the different sensor ids needed by the rules. The
SystemSettings class is a container of such settings and holds all the SuperLinkID
instances needed by the greenhouse example rules. The individual ids are
retrieved by the class from a properties file. This was done to facilitate
configuration of the system on-site. (See section 5.1.3 for a description of
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. . .
double euc l id ianDistanceToGoal ( C l imat i cSta te s t a t e ) {

i f ( s t a t e . p a r t i a l l yEqua l s ( goa l ) ) {
return 0 ;

}
double t o t a l = 0 ;
for ( SensorInput sensorFromGoal : goa l . g e tSenso r s ( ) ) {

double sensorValue = sensorFromGoal . getValue ( ) ;
for ( SensorInput sensorFromState : s t a t e . ge tSenso r s ( ) ) {

i f ( sensorFromGoal . equalsOnSuperLinkID ( sensorFromState ) ) {
sensorValue −= sensorFromState . getValue ( ) ;
t o t a l += ( sensorValue ∗ sensorValue ) ;

}
}

}
return Math . sq r t ( t o t a l ) ;

}
. . .

Snippet 6.8: The euclidianDistanceToGoal method in
GreenhouseHeuristic.

how the system uses metadata) This approach in general also promotes not
duplicating code, since all retrieval of ids is located in one place.

For testing purposes, the class facilitates setting the ids programmati-
cally. This eases the testing of especially the rules considerably, since the
test can use a general state-template and just set the necessary ids on the
SystemSettings object.

The class furthermore holds the method, isTestMode() for checking if
the system is in test mode. (This mode is described further in section 8.1.2)

6.4 Traps, Pitfalls, and Corner Cases

This section reveal some of the traps and pitfalls of the framework. When
developing extensions for use in the framework many things can wreak havoc
on the planner engine. This is because large parts if the engine are exposed
and therefore configurable by the user. The following guidelines, however,
cannot cover all corner cases of what can be done with the framework, but
they are excellent pointers for what to consider when extending the planner
framework. This section will also elaborate on the consequences that can
arise when the different aspects of the extension have not been carefully
considered.
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6.4.1 State Bulk

When constructing a state it is important to consider the state descriptors
used. The floating point precision of these descriptors is directly related to
how many possible states there are. This is because, when dealing with state
spaces where the amount of states is not finite, the consequence functions
generate a massive volume of states. This can result in an enormous bulk of
states if these, like in the greenhouse extension, are calculated on-the-fly.

An example of the consequences of not having reduced the number of
states comes from the greenhouse extension. Decreasing the floating point
precision from two to one in the SensorInput value, resulted in exponential
decrease in plan-length to calculation-time.

The short advice here is; reduce the possible states of the system to
minimize the calculation time. This advice is sound no matter if the graph is
calculated on-the-fly and potentially infinite or has a finite amount of states.
This is because limiting the potential amount of states for the pathfinder to
search, will always reduce the calculation time.

6.4.2 Rules and Desire Functions

When developing and implementing rules, there are some things that have
to be avoided and some good general practices to follow.

The lower the better and vice versa

When implementing desire functions the output value is the weight added to
the edge. This means that the desire function should return a value that is
low if the state change is towards a, for this rule, desirable state.

If the same desire function is used for calculating the desire for use when
delivering goals to the goal handler, bear in mind that the desire needs to
be high if the rule wants change. That is the higher the desire, the higher
the probability that this rule decides what to do. In other words, here it
represents the desire for change.

Avoid directly conflicting rules when possible

When developing rules it is a good idea to avoid direct conflicts between the
rules. The best way to illustrate this is by example. Consider the following
two rules
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temperature limits This non-goal oriented rule will attempt to keep the
temperature in between two fixed values, e.g. 15-20 degrees. When the
temperature is outside these limits, the weight added to the edges by
this rule is immense.

mean temperature This goal oriented rule attempts to keep a steady tem-
perature of e.g. 25 degrees. The further the temperature sways from
this value the larger the value added to the edge weights.

Assume the current temperature is 18 degrees and the goal for the planner
is set to 25 degrees. Each time the pathfinder tries to go beyond the limits of
the temperature limit rule it hits a metaphorical brick wall. This can result
in the pathfinder never finding a path, or that it will need obscure calculation
time to reach it.

Avoid a fixed value as desire function output

If the value output from the desire function of a rule is a fixed value or
constant, the rule may not have any influence in the plan.

To illustrate this let us look at the example used above. Assume that the
starting temperature is 28 degrees and the goal of the mean temperature rule
is 30 degrees. Furthermore assume that the value output by the temperature
limit rule is a fixed value. When the pathfinder then runs, all the edges
emanating from the source will be penalized by the same weight. The plan
the pathfinder produces will, in most cases, be the same plan as one generated
without the use of temperature limit rule. So when using fixed values make
sure that all other rules primarily operate within the area where fixed values
are not applied.

Avoid inverse proportional desire functions

When two, or more, desire functions combined are inverse proportional, they
will cancel each other out when calculating a plan. In other words if the
combined desire of a set of rules is almost always the same, then they will
have no influence on the calculated plan.

Use smooth surfaced desire functions

When deciding upon a desire function it is important to consider the shape of
its output graph. The best desire functions are not jagged with big spikes here
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and there, but smooth. The smooth surface makes the pathfinder avoid the
high penalty areas much better, and this results in a much faster pathfinding.

Avoid local minima in desire functions

When selecting mathematical functions for use as desire functions it is im-
portant to avoid functions with local minima and only one global minimum.
The reason for this is that a rule with a desire function that has more local
minima can make the pathfinder hover around the local minima, which can
result in very long, or even infinite, calculation times.

When using functions with only one global minimum and following the
above advice of using smooth functions for your desire functions the speed
of the pathfinder will be rather good.

Use desire functions with output in same interval

When using rules it is important that they have the same power over the
plan. This is accomplished by making sure that the desire functions used
by the rules, all generate values within a specific interval. In the greenhouse
extension, this was upheld by ensuring that all the desire functions returned
values between zero and one. The only time this does not apply is when
limits are enforced. The level of enforcement is determined by the size of the
value.

Test your desire functions

One of the lessons learned during the greenhouse extension was that it is a
good idea, as is the rule when developing software, to test the desire functions
for unexpected behavior. The photosynthesis rule is a prime example of
this. At first the desire function was only tested with values beneath 80%
photosynthesis rate, it did not do anything unexpected. But when putting
it into action and a lengthy bug tracking later, it was discovered that the
function did not behave very well with values higher than 85%. This was
remedied and tests were written to avoid this from happening again.

Sometimes the rules and their desire are not enough. This is the raison
d’être of the ConstrainingRule.
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private double normal izedDistance ( SensorInput currentSensor ,
SensorInput newSensor ) {

double newValue = newSensor == null ? 0 : newSensor . getValue ( ) ;
double currentValue = currentSensor == null ? 0 : cur rentSensor

. getValue ( ) ;
double normal i ze r ;
double d i s t ance = Math . abs ( newValue − currentValue ) ;
// Normalizes to l o g 10 va lue
i f (Math . abs ( newValue ) > 0 && Math . abs ( currentValue ) > 0

&& Math . abs ( d i s t anc e ) > 0) {
double f looredNorm = Math . f l o o r (Math . min (Math . log10 ( d i s t anc e ) , Math

. min (Math . log10 ( newValue ) , Math . log10 ( currentValue ) ) ) ) ;
normal i ze r = flooredNorm > 0 ? flooredNorm : 0 ;

} else {
normal i ze r = 0 ;

}
i f ( norma l i ze r >= 0) {

normal i ze r += 1 ;
double div = Math . pow(10 , norma l i ze r ) ;
newValue /= div ;
currentValue /= div ;
d i s t anc e = Math . abs ( newValue − currentValue ) ;

}
i f ( d i s t anc e > 1) {

d i s t ance = 1 ;
}
return d i s t ance ;

}

Snippet 6.9: The normalize method in the ConstrainingRule.

6.4.3 ConstrainingRule

A problem appeared, when the greenhouse extension was developed. This
problem was that in some cases pathfinder tried to adjust only one setpoint
which just kept rising and rising. After lengthy debugging sessions the reason
became apparent. The problem was that no rule was governing the setpoint
adjustment or the consequence of adjusting it. This brought the idea of the
ConstrainingRule into play.

The ConstrainingRule is a rule that ensures that any change in the en-
vironment is connected to a cost. The way it works is that when constructing
it the SuperLinkID values of the sensors that are to be constrained are given
as parameters. The desire function of the rule then observes these sensor
values in any state. If any changes happen it then normalizes this change to
a value between zero and one and returns that. The rather intricate math to
do this can be seen in Snippet 6.9. It works by using the logarithm to reduce
the values to something with a difference between zero and one.
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6.4.4 Adjustable Combinatorial Explosion

When developing adjustables it is important to be mindful about the abun-
dance of possible settings. If there are many possible adjustments or many
possible settings, the amount of calculations done on a per vertex level, can
skyrocket.

An example is a temperature adjustable, which can be adjusted within a
tenth of a degree. Then raising the temperature two degrees would require a
plan of at least 20 actions in size. Furthermore, under the assumption that
the pathfinder chooses the shortest path directly, each desire function of each
rule has to be calculated once for each possible adjustment of all adjustables.
To reduce the amount of calculations significantly, the precision of the setting
could be lowered, such that it was only possible to adjust half a degree at a
time or even one degree.

When reducing the amount of possible settings it is a good idea to consider
what is possible. Even though it is possible to measure temperature in the
greenhouse with enormous precision, it does not make sense to have setpoints
with such values. It simply does not make sense to control the temperature
in such a degree because it does not imply any benefit.

6.4.5 Adjustable Consequences

It is also important that the consequence of an adjustment should have a
measurable effect. Measurable means a change that results in a state change.
It is important to keep the amount of states in mind here. If the resulting
consequence is not measurable, it is possible that the planner cannot find
any plan to solve the given problem, because it will run out of vertices to
look at.

6.4.6 Long Runtime

Throughout this section, we have looked at ways to reduce the calculation
time. That is because it is possible for the planner to take an immense
amount of time calculating plans. When not properly calibrated, calculating
time of fortyfive minutes and more have been observed. These long calcula-
tion times can make it difficult to discern between infinite loops and ”just”
long calculations.
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Also if time is of the essence then following the above given guidelines
can mean the difference between success and failure.

The advice here is reducing the calculation time by any means necessary.
Remember that reducing the calculation time will often result in a less precise
plan or behavior. Heed to make reasonable compromises when doing so.
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Chapter 7

Development Process

”However beautiful the strategy, you should occasionally look at
the results.”

— Winston Churchill (1874-1965)

This chapter is dedicated to the development process of the project. The
methodology and strategies that were used are described. Furthermore, the
rationale for fully automating all aspects of the process is explained, along
with an account for how this was accomplished.

7.1 Agile

This project has been a reconnaissance mission. The goal was to explore
the possibilities of introducing game AI technology into the world of the
greenhouse. As such, it would have been foolish to adopt an old-fashioned
rigid development process, like the Waterfall process or Rational Unified
Process (RUP),[27] because they preach a strict flow in development. Each
cycle of development is finished before the goal, or sub-goals, can be modified
to fit changes in requirements or new discoveries. Much like navigating a
minefield, only based on a year old aerial photo; probably not a good idea.

Because we did not know exactly where we were going, we knew the
design of the system probably needed to be revised several times, which of
course it did. Therefore, instead of pursuing a rigid methodology, we chose
to follow the path of agile.
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The notion of agile spawned in the mid 1990’s as a lightweight contrast
to the heavyweight methodologies dominant at the time. The focus moved
from the highly pre-planned development processes, where progress is mea-
sured in terms of deliverable artifacts - requirement specifications, design
documents, test plans, code reviews and the like - to a highly adaptable
process, where working software is delivered frequently and is the principle
measure of progress. The essence of agile development can be found in the
Agile Manifesto.[28]

Agile methods are highly diversified, comprising a family of development
processes. This project was developed as a fusion of several agile methods.
First and foremost, all coding was done as a pair-programming effort. The
design of the system has emerged from ruthless and continuously testing of
all functionality. Some ideas from the Crystal Clear process was originally
used, but when the development focus switched to the Avian Game Platform,
SCRUM was adopted.

7.1.1 Methodology

A quick overview of the two methodologies adapted within the development
of the project.

Crystal Clear

The primary artifacts of the Crystal Clear development process are:[29]

• frequent delivery: of useable code to users

• osmotic communication: developers are located close to each other to
facilitate communication

• reflective improvement: keep track of problems and solutions, and re-
flect on them

A nice technique from Crystal Clear is blitz planning. The essence of blitz
planning is brainstorming. The different tasks of a project, and their inter-
dependencies, is identified and laid out on a table. This procedure simplifies
planning, as its makes missing items immediately evident and displays the
”natural” order in which to approach the tasks.
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SCRUM

As mentioned, the development adapted some elements from SCRUM. The
most important was the notion of a backlog. The set of tasks that are re-
maining in a project is the product backlog. An iteration in SCRUM is called
a sprint, and the remaining tasks of a sprint is the sprint backlog.

When a project is broken down into simple and manageable tasks, it helps
you focus on the tasks at hand. Keeping the focus is great way of speeding
up development. Another feature of the backlog is that it illustrates the
development rate.

SCRUM also dictates daily SCRUM meetings1, where each person present
answers the same three questions:

1. What did you do yesterday?

2. What have you planned for today?

3. Is anything impeding your work?

It is of course ridiculous to have a daily meeting when there is only the two
of us, and we are doing pair-programming, but during the time we worked
at Rising Tide, it was a very useful method for eliminating duplicate work,
getting help quick, and sharing ideas.

7.1.2 Pair Programming

The idea of pair-programming is stolen from eXtreme Programming (XP).[30]
The benefits of programming in pairs are numerous; just to name a few:

• Higher discipline: one tends to ”do the right thing” first time around.

• Better design: constantly bouncing design ideas off the partner results
in a more well thought out design.

• Collective code ownership: every developer has working knowledge of
the entire code base.

• Mentoring: the sharing of knowledge is fluent.

1In Crystal Clear it is just called the daily stand-up meeting.
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The entire project is done as a pair-programming effort. The ease of
which any design issue, code problem, or algorithm quirk is discussed and
solved, is simply not possible in any other way.

Even pair programmers doing agile have to use some tools to make ev-
erything work like a well oiled machine though. Let’s look at a few of those
tools and techniques.

7.2 Version Control

Version control is a time machine! It’s that simple.
It gives the developer the freedom and confidence to go with any idea

that comes to his mind, no matter how wild it is: everything can always be
rolled back if it fails.

The project was given a Subversion repository on a server at the Uni-
versity of Southern Denmark. Besides perhaps the javac compiler, this has
been the most valuable asset, bar none, for this project.

In addition to the obvious Java source files, everything needed to build
the project has been checked into version control, and has been updated with
newer versions as they came along. This includes build scripts and configu-
ration scripts, such as Ant’s build.xml and the CruiseControl config.xml,
as well as external libraries, such as JUnit and Log4j. Section 7.3 gives the
rationale for versioning external libraries that in principle just as easily could
have been downloaded again.

All non-autogenerated documentation was also checked into version con-
trol, along with articles, papers, licenses, and ideas scribbled down in notepad.
This of course includes this writing as well. Since it is written in LATEX the
”source” is plain text files, which are ”easy as pie” for any version control
system to handle. The same freedom applies to ordinary text as to Java
source files; you are never worried about changing or deleting anything, since
it can always be rolled back.

7.2.1 Structure

The repository is structured as follows. The top folder is the project name,
sidious. That folder is split up into three different, but equally important
folders, each with specific responsibilities. Figure 7.1 shows the structure of
the repository.
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• trunk holds the main development line of the project.

• branches holds the release branches of this project; which as of this
writing is empty, but when this project is delivered, will hold the thesis
delivery.

• tags holds tags of the project; e.g. when demos and large refactorings
took place.

Figure 7.1: The sidious project trunk and branches

7.3 Automation

One of the non-functional requirements of this project was that all aspects
of its development was to be automated. From compiling and deployment,
through testing and instrumentation, to generation of documentation, every-
thing can be, and is, automated. A dedicated Ant script is responsible for
executing all the above tasks.
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The project has a specific directory structure, which enables separation
of test and production2 source files into different directories but mirrored by
the Java package structure. This means that test files and production source
files are in the same Java package but in different directories. The structure
is shown in Figure 7.2. The src directory contains the production source
code, the test directory contains the test files, and the vendor directory
contains all external libraries needed, e.g. jar files for junit, log4j etc.

The build directory, which is left outside version control, contains all
artifacts that were built in the process. The reason for this directory is
explained in a moment.

Figure 7.2: The directory structure of the sidious project

One of the reasons to automate the entire process is to make it com-
plete and repeatable. Completeness means that the process is self-sufficient;
the developer only needs to ”turn the crank” and everything is executed
as the recipe prescribes.3 Repeatability ensures that the exact same build
can be generated again at any time in the future. To ensure completeness
and repeatability, the entire above structure is placed under version control.
Section 7.2 descripes in further detail how version control was used in this
project. Even though all external libraries can be downloaded again, plac-
ing them under version control helps ensure that the build is complete and
repeatable, because the build is then not dependable of a specific version of
a library being available still.

2The distinction between production files and test files is to have clear separation of
concerns.

3It can be a good analogy to think of the script as a recipe for baking crisp new builds.
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Ant scripts provide the notion of targets, which are a way of specifying
which parts of the script to be run. Each target can have dependencies
to other targets, which then are run before the specified target is. This
chain-of-dependencies enables the script to make the process complete and
repeatable.

7.3.1 Building

When the script is run, all source files in the src and test directories are
compiled into class files and placed in the build/src and build/test direc-
tories respectively. Again, the production files and test files are separated.
Keeping these files separate simplifies shipping of the finished product. The
build-target also includes generation of documentation; e.g. Javadoc, HTML
view of the source code, and code analysis.

These artifacts are built into the build/generated directory. That way
compiled class files and generated documentation, test results, and code anal-
ysis results are kept apart.

7.3.2 Testing

The default target of this project is test. The chain of dependencies of the
test-target ensures that all production and test files are compiled, and that
all unit tests are executed. See Snippet 7.1.

As the Snippet shows the integration tests are left out. This was done to
make the execution of the unit tests as fast as possible; if executing the tests
becomes too slow, developers tend to ”forget” to run them.

7.3.3 Deploying

Automating deployment of a project would normally include generation of
a jar or zip file, or perhaps deploying the product on an application server.
This project does not require any explicit deployment. However, since the
documentation of the project is automatically generated, and since this writ-
ing is done in LATEX, which also needs compiling, the deploy target of the
Ant script does the following:

1. Ensures that all production and test source code is compiled.

2. Ensures that all static code analysis is run.
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<property name=” generated . doc . j u n i t ”
location=”${ generated . doc . d i r }/ j un i t ” />

<target name=” t e s t ” depends=”compile−t e s t s ”
description=”Runs a l l t e s t s ”>
<delete d i r=”${ generated . doc . j u n i t }” />
<mkdir d i r=”${ generated . doc . j u n i t }” />
< j u n i t

h a l t o n f a i l u r e=” true ”
f o rk=”yes ”
printsummary=”on”
forkmode=”perTest ”>
<classpath r e f i d=” p r o j e c t . c l a s spa th ” />
<jvmarg value=”−ea” />
<f o rmatte r type=”xml”/>
<batch t e s t t od i r=”${ generated . doc . j u n i t }”>

<f i l e s e t d i r=”${ bu i ld . t e s t . d i r }”
exc ludes=”∗∗/∗ In t eg ra t i onTes t . c l a s s ”
i n c l ud e s=”∗∗/∗Test . c l a s s ” />

</ batch t e s t>
</ j un i t>
<junitreport t od i r=”${ generated . doc . j u n i t }”>

<f i l e s e t d i r=”${ generated . doc . j u n i t }”>
<include name=”TEST−∗.xml” />

</ f i l e s e t>
<report t od i r=”${ generated . doc . j u n i t }” />

</ junitreport>
</target>

Snippet 7.1: Test target in the Ant build script. (build.xml)
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3. Ensures that all documentation is generated.

4. Compiles this writing into a PDF file.

5. Copies all the above generated artifacts into the designated delivery

folder, where it is then ready to be burned to a CD-ROM, which is
enclosed with this document.

6. Copies the contents of the delivery folder to the server hosting the
project homepage, where it is then readily available.

7.3.4 Continuous Building

Although maybe overkill for this project4, a dedicated build machine was set
up, to continuously build the project and run the tests. Nevertheless, it adds
to the confidence that everything is working all the time. The machine5 was
setup with CruiseControl to run the scheduled building and testing. CruiseC-
ontrol is a framework for running continuous integration. See Appendix B
for a reference. It supports scheduled execution of Ant tasks, various pos-
sibilities for publishing the results, combined with source control tools. It
was configured to wake up every thirty minutes, checkout a fresh copy of
the source code from the repository, build it, and run all the tests. If no
changes was made to the repository, it merely went back to sleep. If the
build was successful, the developer who made the last commit was notified
by email; if the build failed all developers (both of us) were notified by email.
All necessary scripts to setup and configure CruiseControl is located in the
automation folder in the project.

4Not least because the project is developed as a pair-programming effort.
5A very old Pentium III 1GHz with 256MB RAM
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Chapter 8

Testing

”I have not failed. I’ve just found 10,000 ways that won’t work.”

— Thomas Alva Edison (1847-1931)

This chapter is started with the incentive for testing the way we have
done, our experience with writing the tests, and some arguments for ”loos-
ening” a good object-oriented programming practice. This is followed by a
walkthrough of the main test setups and their results.

8.1 Coding With Confidence

The following lines explain the importance of writing, running, and main-
taining tests.

8.1.1 Unit Testing

Unit testing has been an invaluable friend and reliable companion throughout
the entire development of the system. When all unit tests run, it automat-
ically induces confidence in whatever task the developer has finished really
works and is valid, and additionally leads to a higher appreciation of the code
base as a hole.

When ”the bar is green”1 it feels liberating. You can let go of the previous

1”Keep the bar green, to keep the code clean” is a saying when using JUnit. When all
the unit tests run without failure, the GUI version of JUnit shows a green bar.
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task, because you know it works, or at least doesn’t break anything. That
provides the necessary mental capacity to solve the next task without having
to deal with any ”skeletons in the closet”.

Proof

Unit tests are the developer’s way of proving that a piece of code actually
does what it’s supposed to do – or at least what the developer thought it
should.

Collateral Damage

When developing an application the natural way is to add features one at
a time, incrementally. When a developer is adding a feature or correcting
a bug, he is changing the code base and, consequential, also risks creating
a new bug or destroying some other possibly unrelated part of the system.
Unit tests ensure that everything works at least as well as before adding the
new feature or fixing the bug.

Additionally, if a developer discovers a bug and fixes it, he should always
write a new unit test that catches that bug so bugs only pop up once!

Executable documentation

Another way of thinking about unit testing is as executable documentation.
When writing a unit test to accompany a piece of code, the developer at
the same time states the intended use of that piece of code. This statement
also goes for an entire API. When an API is delivered with the unit tests as
chaperon they serve as examples of how to use the API.

Trust

In the authors’ experience unit testing has the effect that one simply does
not trust a piece of code that doesn’t have any unit tests. Ones own code or
anybody else’s.

The Privates are Showing

Good object-oriented practice dictates classes to ”hide their privates”. How-
ever, to be able to test thoroughly it is often useful to have access to otherwise
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private methods; e.g. methods used in composite calculations, where only the
composite is the public exposed method. Java does not provide a straightfor-
ward way to test private member methods2. A possible solution is to make
the test case a private member class. This would expose the private methods
to the test case class, but it would also introduce horrible code clutter to the
class as well as coupling those classes forever.

This project was build with a parallel package structure, allowing the
test case classes to be within the same Java package as the classes they are
testing, but in another physical folder. The details are explained in section
7.3. The ”private” methods needed testing had then their access level set to
default. This approach allows the methods to be accessed from classes within
the package, and hence, to be accessed from the test case classes, but the
advantage is that it does not propagate those methods to the public exposed
API.

8.1.2 Integration Testing

As mentioned earlier in the discussion of automation, integration tests were
a separate target from the default test target of the Ant script. The inte-
gration testing of the system entailed exercising the entire system; from the
first call to requestPlan to a plan is finally delivered. This is potentially
very long calculations, and therefore not feasible for the default test target
as it is paramount that the tests can be executed often. The integration tests
was of course a part of the continuously build process on the dedicated build
machine.

Integration testing can be done at a more fine-grained level, but for this
system, the unit tests could fully cover testing the integration issues between
packages.

Furthermore, to ease the complexity of writing the tests several mock ob-
jects were developed. A mock object is an object that imitates the behavior of
another object, but is more easily used or can be controlled more specific. All
developed mock objects are located in the dk.deepthought.sidious.mock

package.

2C++ provides the notion of friends, which allows for testing of private methods and
members. Nevertheless, they must be stated as a friend of the class to be tested, and
hence add additional code and coupling to the class. C# provides the ”internal” access
modifier, which is roughly equivalent to Java’s default level.
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To further assist the integration tests, a special test mode can be set. This
mode is set on the SystemSettings object and is used to limit the generation
of plans beyond the GoalHandler. This has the side-effect that the initiating
PlanRequester is not removed from the requesterMapping located on the
BlackBoardEngine, and later requests for that specific requester will then
not fail.

8.2 Test Overview

The following gives an overview of how the system was tested, from the small
unit tests, only testing simple functionality, to the integration tests, that fire
up the entire system.

Only a small excerpt of all the tests is shown in this section. This was
decided, since the tests are written in the same general manner throughout
the project, which will be explained in the next section, and since all tests
can be easily found, as they have the same name as the class they are testing,
with ”Test” appended; e.g. the test case for Step is named StepTest. This
excerpt poses only to give a general outline of the tests written.

As mentioned in Section 7.3, the test and production source files are
placed in separate physical folders, but in the same logical Java package.
This means that the test classes are to be found in the test folder, relative
to the project root.

Furthermore, since JUnit are set to deliver the results of the tests as
HTML files, all test results can be browsed. Appendix A explains were the
results are located.

8.2.1 Unit Tests

This section describes some of the unit tests made for the system.

As the code coverage clearly shows all parts of the system has been
”touched” by the tests. Unfortunately, this only shows that all parts of
the system has been exercised by the tests, but not if the methods has been
tested thoroughly.

By thoroughly we mean not only testing the ”on a calm sunny day,
in the middle of the road”-case, but whenever possible checking the Right-
BICEP.[31] See Table 8.1 for the acronym.
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Right Are the results right?
B Are the boundary conditions correct?
I Can the inverse relationship be checked?
C Can the results be cross-checked using other means?
E Can error conditions be forced to happen?
P Are performance characteristics within bounds?

Table 8.1: The Right-BICEP

It has been the goal of all tests written to abide to the Right-BICEP
principle whenever possible. The following are an exemplary subset of tests
that were written.

ClimaticStateTest

This test example shows the average method of the ClimaticState. As
Snippet 8.1 shows, the method is first tested for the right condition by
evaluating to a known average, then tested error conditions by passing
null and an empty list, and then for boundary conditions by passing
states with no sensors. The method does not have any grounds for testing
the inverse relationship or performance characteristics.

TemperatureRuleTest

The TemperatureRuleTest follows the Right-BICEP principle, but it also
shows how to circumvent the rule properties construction. As it can be seen
in Snippet 8.2, the property object of the rule can be passed along to a static
factory method on the rule. This allows for the flexibility of properties files
describing the rules, and at the same time makes the testing a lot easier.

The temperature rule furthermore acts as a boundary guardian for the
environment. As such, its desire method return VERY high values when the
system evaluates outside the boundaries. This is also reflected in the test,
by securing that the desire method returns the specified value.

AStarAlgorithmTest

When testing the AStarAlgorithm class a completely new graph was imple-
mented. This graph, called TestGraph, was used as both a means to prove
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public f ina l void t e s tStateAverage ( ) {
ArrayList<Cl imat icState> l i s tOfCS = TestBui lder . bu i l dC l ima t i cS t a t eL i s t (

10 , 10 , 0 , 1 ) ;
// Right : know the average i s 4.5
Cl imat i cState r e tu rnSta t e = ( Cl imat i cSta te . average ( l i s tOfCS ) ) ;
for ( SensorInput input : r e tu rnSta t e . ge tSenso r s ( ) ) {

a s s e r tEqua l s ( 4 . 5 , input . getValue ( ) ) ;
}
// Test f o r nu l l
try {

Cl imat i cState . average ( null ) ;
f a i l ( ” nu l l was accepted ” ) ;

} catch ( I l l ega lArgumentExcept ion e ) {
asse r tTrue ( true ) ;

}
// Test f o r l i s t wi th no sensors
try {

Cl imat i cState . average ( TestBui lder . bui ldEmptyStateList ( ) ) ;
f a i l ( ”empty was accepted ” ) ;

} catch ( I l l ega lArgumentExcept ion e ) {
asse r tTrue ( true ) ;

}
Cl imat i cState emptyState = TestBui lder . bu i l dC l imat i cS ta t e (0 , 0 ) ;
int sensorAmount = 0 ;
ArrayList<Cl imat icState> s t a t e L i s t = TestBui lder

. bu i l dC l ima t i cS t a t eL i s t (10 , sensorAmount , 0 , 2 ) ;
// Test f o r empty sensor l i s t
a s s e r tEqua l s ( emptyState , C l imat i cSta te . average ( s t a t e L i s t ) ) ;

}

Snippet 8.1: The test of the average method of ClimaticState.
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public f ina l void t e s tCa l c u l a t eDe s i r e ( ) {
SuperLinkID ID = new SuperLinkID ( ” t e s tCa l c u l a t eDe s i r e ” ) ;
P rope r t i e s prop = new Prope r t i e s ( ) ;
prop . se tProper ty ( ” s e n s o r i d ” , ” sensor0 ” ) ;
prop . se tProper ty ( ” t min” , ”5” ) ;
prop . se tProper ty ( ”k min” , ” 0 .5 ” ) ;
prop . se tProper ty ( ”t max” , ”30” ) ;
prop . se tProper ty ( ”k max” , ” 0 .5 ” ) ;
prop . se tProper ty ( ”t mean” , ”18” ) ;
// Test happy day fo r s t a t i c f a c t o r y
TemperatureRule tempRule = TemperatureRule . constructTemperatureRule ( ID , prop ) ;
// Happy day
double d e s i r e = tempRule . c a l c u l a t eDe s i r e ( 2 0 ) ;
a s se r tTrue ( d e s i r e <= 1 | | d e s i r e >= 0 ) ;
// Mean temperature t e s t
d e s i r e = tempRule . c a l c u l a t eDe s i r e ( 1 8 ) ;
a s s e r tEqua l s ( 0 . 0 , d e s i r e ) ;
// Should re turn 1000 when ou t s i d e boundaries
d e s i r e = tempRule . c a l c u l a t eDe s i r e ( 3 5 ) ;
a s s e r tEqua l s ( 1000 . 0 , d e s i r e ) ;
d e s i r e = tempRule . c a l c u l a t eDe s i r e (−3);
a s s e r tEqua l s ( 1000 . 0 , d e s i r e ) ;
// Further away from mean imp l i e s lower d e s i r e
double de s i r e 1 = tempRule . c a l c u l a t eDe s i r e ( 2 2 ) ;
double de s i r e 2 = tempRule . c a l c u l a t eDe s i r e ( 2 5 ) ;
a s se r tTrue ( d e s i r e 1 <= de s i r e 2 ) ;

}

Snippet 8.2: Test of the desire method of the TemperatureRule.
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public void te s tJAStar4Vert i ce s4Edges ( ) {
// 4 Vertex 4 edge Graph with s h o r t e s t path 3 v e r t i c e s long
Co l l e c t i on <TestAdjacent> adList4 = new ArrayList<TestAdjacent >() ;
adLis t4 . add (new TestAdjacent (new TestState (0 , 0 ) , new TestState (1 , 1 ) ,

2 ) ) ;
adLis t4 . add (new TestAdjacent (new TestState (0 , 0 ) , new TestState (2 , 1 ) ,

5 ) ) ;
adLis t4 . add (new TestAdjacent (new TestState (1 , 1 ) , new TestState (2 , 1 ) ,

2 ) ) ;
adLis t4 . add (new TestAdjacent (new TestState (1 , 1 ) , new TestState (2 , 2 ) ,

4 ) ) ;
TestGraph g4 = new TestGraph (new TestState (2 , 1 ) , new TestState (0 , 0 ) ,

adLis t4 ) ;
Path f inder p4 = new AStarAlgorithm ( ) ;
p4 . search ( g4 ) ;
a s s e r tEqua l s ( ”2 edges from s t a r t to goa l f a i l e d ” , 4 . 0 , g4 . getGoalVertex ( )

. g ( ) ) ;
}

Snippet 8.3: Test of the search method of the AStarAlgorithm.

that the algorithm had been implemented correctly, but also as proof that
any graph implementation could be used when pathfinding.

The TestGraph makes use of a class called TestAdjacent, which is a
representation of an adjacency list. In TestGraph the vertices represent a
state called TestState which represents a set of coordinates (x, y). All the
tests work as seen in Snippet 8.3. First an adjacency list is created, then the
graph is contructed, and finally the graph is searched. The cost of the path
found is then checked by extracting the cost value from the goal vertex.

8.2.2 Integration Tests

With the parts of the system quality tested, it is time to put it all together and
see all wheels turning in the so-called integration tests. Integration testing is
done to verify that all parts of the system interact and that performance is up
to specs. There are different approaches to integration testing. One approach
where only parts of the system is integrated and tested. The approach chosen
to test the greenhouse extension is one where the entire framework and parts
of the extension is tested at once. At the beginning, it is a good idea to only
test simple problems and then gradually increase the difficulty level.

A wide array of different setpoints and rules has been tested against each
other, and the following is only a small excerpt of the tests that have been
run. These excerpts have been chosen to demonstrate that the essentials
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private void f i n i s h e d ( Greenhouse greenhouse ) throws Inte r ruptedExcept ion {
long startTime = System . cur rentT imeMi l l i s ( ) ;
while ( ! greenhouse . i sF i n i s h ed ( ) ) {

Thread . s l e e p ( 1 0 ) ;
}
long end = System . cur r entT imeMi l l i s ( ) ;
Plan plan = greenhouse . getCurrentPlan ( ) ;
a s se r tTrue ( ”Plan was empty” , plan . s i z e ( ) > 0 ) ;
System . out . p r i n t l n ( ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”
System . out . p r i n t l n ( ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”
System . out . p r i n t l n ( ”Plan o f s i z e=” + plan . s i z e ( ) + ” f i n i s h e d in ”

+ ( end − startTime ) + ” m i l l i s e c ond s ” ) ;
System . out . p r i n t l n ( ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”
Stack<Step> s t ep s = plan . ge tSteps ( ) ;
while ( ! s t ep s . isEmpty ( ) ) {

Step step = s t ep s . pop ( ) ;
System . out . p r i n t l n ( s tep ) ;

}
}

Snippet 8.4: The finished method of the integration test.

work. The reader is encouraged to alter the values and run the tests to
check the validity. This should be fairly easy, and is explained in the How-To
section of Chapter 6.

The finished Method

Because the system runs in multiple threads, and JUnit does not provide
a native way of testing with multiple threads, the finished method was
conceived. When a plan is delivered back to a GreenHouse, a finished

flag is raised on that GreenHouse. The finished method just sleeps for 10
milliseconds, wakes up and checks that flag; if the flag is not yet set it just
goes back to sleep, and if the flag is set the rest of the method is executed:
The plan is retrieved, checked to be non-empty, and then printed to the
console. The method is shown in Snippet 8.4.

The following test cases are all located in the PathfinderIntegrationTest
class, which is located in the dk.deepthought.sidious.planner package.

testIntegrationSimple

The first integration test is a simple test involving the HeaterSetpoint and
the TemperatureRule. The test itself can be seen in Snippet 8.5.

The test itself is started with adding the TemperatureRule and the
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public void t e s t I n t e g r a t i onS imp l e ( ) throws Exception {
SuperLinkID id = new SuperLinkID ( ” t e s t I n t e g r a t i onS imp l e ” ) ;
// Add ad j u s t a b l e s
Co l l e c t i on <Adjustable> ad j s = new ArrayList<Adjustable >() ;
ad j s . add (new HeaterSetPoint ( 1 8 ) ) ;
// Add ru l e s
Co l l e c t i on <Rule> r u l e s = new ArrayList<Rule >() ;
TemperatureRule temperatureRule = new TemperatureRule ( id ) ;
r u l e s . add ( temperatureRule ) ;
r u l e s . add (new Constra in ingRule ( SystemSett ings . getHumidityID ( ) ,

SystemSett ings . getTimeID ( ) ) ) ;
// Creat ing current s t a t e
SensorInput temperature = new SensorInput ( SystemSett ings

. getTemperatureID ( ) , 1 8 ) ;
SensorInput hum = new SensorInput ( SystemSett ings . getHumidityID ( ) , 5 0 ) ;
SensorInput time = new SensorInput ( SystemSett ings . getTimeID ( ) , 0 ) ;
C l imat i cState source = new Cl imat i cSta te ( Arrays . a sL i s t ( temperature ,

hum, time ) ) ;
// Se t t i n g sensors on s e r v i c e engine
Serv iceEng ine . s e t S en s o rL i s t ( source . ge tSenso r s ( ) ) ;
// Request p lan
Greenhouse req = new Greenhouse ( id , adjs , r u l e s ) ;
BlackBoardEngine . g e t In s tance ( ) . requestPlan ( req ) ;
f i n i s h e d ( req ) ;

}

Snippet 8.5: Simple Integration test.

HeaterSetpoint, with a setting of 18, to the greenhouse. The environment
is also initialized with a humidity of 50% and a temperature of 18 degrees.
Then a plan is requested by the greenhouse and the system is running. In
the system the TemperatureRule produces a goal of 22 degrees and then a
plan is generated. The output, in a simplified form, can be seen in Snippet
8.6

From the output, it can be seen that the HeaterSetpoint is not entirely
correctly modeled. However, this does not detract from the fact that the
plan found is sound as the temperature setpoint is rising.

testIntegrationWithConflictingRules Involving Morningdrop

These test show what happens when running the planner with two conflicting
rules. The MorningDropRule and the TemperatureRule. The MorningDropRule
is a rule trying to achieve a drop in temperature early in the morning. The
TemperatureRule on the other hand tries to achieve a mean temperature
that is a lot higher. The test is initialized just like in the test above with the
exception that the HeaterSetpoint setting and the environment tempera-
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Plan o f s i z e=8 f i n i s h e d in 93 m i l l i s e c ond s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Step [ ad j u s t ab l e s =[HeaterSetPoint [ s e t t i n g = 1 9 . 0 ] ] . . . ]
Step [ ad j u s t ab l e s =[HeaterSetPoint [ s e t t i n g = 2 0 . 0 ] ] . . . ]
Step [ ad j u s t ab l e s =[HeaterSetPoint [ s e t t i n g = 2 1 . 0 ] ] . . . ]
Step [ ad j u s t ab l e s =[HeaterSetPoint [ s e t t i n g = 2 2 . 0 ] ] . . . ]
Step [ ad j u s t ab l e s =[HeaterSetPoint [ s e t t i n g = 2 3 . 0 ] ] . . . ]
Step [ ad j u s t ab l e s =[HeaterSetPoint [ s e t t i n g = 2 4 . 0 ] ] . . . ]
Step [ ad j u s t ab l e s =[HeaterSetPoint [ s e t t i n g = 2 4 . 0 ] ] . . . ]
Step [ ad j u s t ab l e s =[HeaterSetPoint [ s e t t i n g = 2 4 . 0 ] ] . . . ]

Snippet 8.6: Simple Integration test.

Plan o f s i z e =10 f i n i s h e d in 9609 m i l l i s e c ond s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Step [ ad j u s t ab l e s =[HeaterSetPoint [ s e t t i n g =23 .0 ] , CO2SetPoint [ s e t t i n g = 8 5 0 . 0 ] ] . . . ]
Step [ ad j u s t ab l e s =[CO2SetPoint [ s e t t i n g =850.0 ] , HeaterSetPoint [ s e t t i n g = 2 4 . 0 ] ] . . . ]
Step [ ad j u s t ab l e s =[HeaterSetPoint [ s e t t i n g =24 .0 ] , CO2SetPoint [ s e t t i n g = 9 5 0 . 0 ] ] . . . ]
Step [ ad j u s t ab l e s =[CO2SetPoint [ s e t t i n g =950.0 ] , HeaterSetPoint [ s e t t i n g = 2 5 . 0 ] ] . . . ]
Step [ ad j u s t ab l e s =[CO2SetPoint [ s e t t i n g =950.0 ] , HeaterSetPoint [ s e t t i n g = 2 6 . 0 ] ] . . . ]
Step [ ad j u s t ab l e s =[CO2SetPoint [ s e t t i n g =950.0 ] , HeaterSetPoint [ s e t t i n g = 2 7 . 0 ] ] . . . ]
Step [ ad j u s t ab l e s =[HeaterSetPoint [ s e t t i n g =27 .0 ] , CO2SetPoint [ s e t t i n g = 8 5 0 . 0 ] ] . . . ]
Step [ ad j u s t ab l e s =[CO2SetPoint [ s e t t i n g =850.0 ] , HeaterSetPoint [ s e t t i n g = 2 8 . 0 ] ] . . . ]
Step [ ad j u s t ab l e s =[CO2SetPoint [ s e t t i n g =850.0 ] , HeaterSetPoint [ s e t t i n g = 2 8 . 0 ] ] . . . ]
Step [ ad j u s t ab l e s =[CO2SetPoint [ s e t t i n g =850.0 ] , HeaterSetPoint [ s e t t i n g = 2 9 . 0 ] ] . . . ]

Snippet 8.7: Integration test with conflict between MorningDropRule and
TemperatureRule.

ture are 14 degrees. Furthermore, the MorningDropRule is added in one the
tests. The output of the two tests can be seen in a simplified form in Snippet
8.7 with the conflict and in 8.8 without.

It can be seen that the MorningDropRule forces the HeaterSetpoint to
have a lower setting longer. Namely it stays at 24 degrees for two steps in the
plan with MorningDropRule compared to the one without. It is also visible
that the calculation time without a conflict is shorter.

testIntegrationWithManyAdjustablesAndConflictingRules

In this final test the PhotosynthesisRule is tested. This shows whether or
not the system will work with the more complex rules and goals posed by
more complicated rules. This test also succeeds, but shows some of the flaws
in the rule making at the same time. The model in the PhotosynthesisRule
must be calculated many times, which is the primary reason for the long
calculation time, of beyond a minute on a very fast dual core machine. The
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Plan o f s i z e =10 f i n i s h e d in 344 m i l l i s e c ond s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Step [ ad j u s t ab l e s =[HeaterSetPoint [ s e t t i n g =23 .0 ] , CO2SetPoint [ s e t t i n g = 8 5 0 . 0 ] ] . . . ]
Step [ ad j u s t ab l e s =[CO2SetPoint [ s e t t i n g =850.0 ] , HeaterSetPoint [ s e t t i n g = 2 4 . 0 ] ] . . . ]
Step [ ad j u s t ab l e s =[CO2SetPoint [ s e t t i n g =850.0 ] , HeaterSetPoint [ s e t t i n g = 2 5 . 0 ] ] . . . ]
Step [ ad j u s t ab l e s =[CO2SetPoint [ s e t t i n g =850.0 ] , HeaterSetPoint [ s e t t i n g = 2 6 . 0 ] ] . . . ]
Step [ ad j u s t ab l e s =[CO2SetPoint [ s e t t i n g =850.0 ] , HeaterSetPoint [ s e t t i n g = 2 7 . 0 ] ] . . . ]
Step [ ad j u s t ab l e s =[HeaterSetPoint [ s e t t i n g =27 .0 ] , CO2SetPoint [ s e t t i n g = 9 5 0 . 0 ] ] . . . ]
Step [ ad j u s t ab l e s =[HeaterSetPoint [ s e t t i n g =27 .0 ] , CO2SetPoint [ s e t t i n g = 8 5 0 . 0 ] ] . . . ]
Step [ ad j u s t ab l e s =[CO2SetPoint [ s e t t i n g =850.0 ] , HeaterSetPoint [ s e t t i n g = 2 8 . 0 ] ] . . . ]
Step [ ad j u s t ab l e s =[CO2SetPoint [ s e t t i n g =850.0 ] , HeaterSetPoint [ s e t t i n g = 2 8 . 0 ] ] . . . ]
Step [ ad j u s t ab l e s =[CO2SetPoint [ s e t t i n g =850.0 ] , HeaterSetPoint [ s e t t i n g = 2 7 . 0 ] ] . . . ]

Snippet 8.8: Integration test without conflict between MorningDropRule and
TemperatureRule

test generates a plan consisting of 16 steps.
For a pointer to where test results can be found, see Appendix A.3.



Chapter 9

Discussion and Conclusion

”A conclusion is the place where you got tired of thinking.”

— Arthur Bloch (1948 - )

This final chapter discusses the outcome of the project, the major lessons
learned, where the project could go from here, and finishes with the conclu-
sion. The time for reflection has come.

9.1 Discussion

Throughout the development, some unforeseen issues presented themselves.
Some of the smaller issues and possible workarounds are described in Sec-
tion 6.4.2. Large-scale issues have been considered, discussed, and addressed
throughout the development of the framework. For instance much considera-
tion has been put into how much of the core functionality, of the framework,
should be exposed.

9.1.1 Extendability vs. Usability

When exposing much of the inner workings and logic to developers who
wish to use the framework there is the advantage of being able to use it for
things never anticipated by the original developers. This is a great advantage
but it also gives rise to some major drawbacks. First, there is the problem
that extension developers may find the framework overwhelming when first
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approaching it. This can be countered by having some examples and default
values to tinker with. The greenhouse extension is an excellent sandbox for
developers to tamper with to see just how far they can go when using the
framework. Besides that, they serve as excellent templates for how to build
the different extension components.

Another problem with exposing a lot of the core functionality to the
developers of framework extensions is; they can break the system in ways
never anticipated by the original developers. This is because, when you
expose the logic, you also expose the possibility to create flawed logic, which
may cause deadlocks, horrible performance, or no performance at all. To
counter this, specific parts of the system can be encapsulated. The first
parts that are prime candidates for encapsulation are the parts most prone
to be implemented erroneously. This will of course give rise to the debate
about which are the most delicate parts, and eventually the framework may
end up being very inflexible. To avoid inflexibility there will be times when
encapsulation is not an option. This is where good documentation saves
the day. As stated earlier, all elements of the framework, exposed as well
as private, are well documented through Javadoc. Furthermore, this writing
provides answers to potential ”challenges”, or at least cautions against them.
The Traps, Pitfalls, and Corner Cases section from Chapter 6, explains
where it is likely to encounter these challenges, and how to conjure counter
spells.

During the development of the framework, keeping the above advice in
mind at all times was attempted; combining encapsulation and good doc-
umentation, to help extension developers find a balance between risk and
flexibility. These lessons are not only applicable for this framework but also
important for framework developers in general. The intended users of these
frameworks will then reap the benefits.

Refactoring to Game

During the refactoring to the Avian Game Platform, many lessons on how to
purvey the usage of the framework were learned. This was because it was the
first direct contact with people supposed to use and extend the framework.
The questions asked by the team at Rising Tide gave invaluable insight on
what, and how, framework extension developers think, and what they expect
from an AI framework.

The need for a highly flexible framework was expressed. This is one of
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the main reasons for the framework ending up as open and flexible as it is.
The advantages of the highly flexible design far outweighed the risks, as the
framework developers would always be close by to answer questions and help
debugging the extension.

9.1.2 Other Approaches

During development, it became clear that other approaches could have yielded
good results too. One of the major problems was that the rules and espe-
cially their desire functions tended to require much more tweaking than first
anticipated. One way this could be avoided would have been to go with a
fully-fledged expert system. This would then probably reduce the amount
of time spent tweaking the rules. The benefits gotten from using a planner
however far outweigh the benefits of an expert system.

Because formulating the rules for the system can be a complicated task,
it could be interesting to apply evolutionary algorithms to the greenhouse
problem domain. As described in Section 3.2, genetic algorithms can be
used to mine data and generate fuzzy rules. One of the ongoing tasks in the
greenhouse domain is to collect data sets, coupling the climatic state of the
plants through their growth period, to the end-quality of the same plants;
and to have it done automatically. As viable collected data amounts, genetic
algorithms could be used to mine the data and generate fuzzy rules for an
expert system. This expert system could then be applied as the rule engine
for the planner. This approach would complete a circle, where artificial
intelligence were monitoring, assessing, and controlling the growth cycle of
plant life.
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9.2 Conclusion

The Goal

This project was developed with the ambition that the result should be a well-
tested, easy maintainable, rock-solid piece of software; that applied game AI
to solve the climate control problem.

The Challenges

While fulfilling this ambition, we encountered a few challenges.

The formulation of rules and their desire functions proved to be particu-
larly challenging; if not formulated meticulously, the result can be extreme
calculation-time. Additionally, by combining multiple rules and adjustables,
the result can be non-deterministic.

The Solution

The primary solution to the challenges of the framework is to be VERY
careful when formulating the rules of the system. Excellent guidelines for
succeeding in rule building are outlined in the Traps, Pitfalls, and Corner
Cases section. However, the best solution is to ”be mindful of your rules”.

The Success

The project clearly proves that the framework can be used to solve the cli-
mate control problem. It provides basic solutions to the drawbacks of the
IntelliGrow system. With aid from climate control professionals, the system
can function as a fully-fledged decision support system on a real production
line. Since this was the ultimate goal of the thesis, it is the authors’ opinion
that the mission was accomplished.

The Future

The grand vision of IntelliGrow seems to be within grasp, with a little help
from this framework.



9.2. CONCLUSION 119

The End

The authors do hope you have enjoyed the show; it has been a great pleasure
making it.
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Appendix A

Resources

Easy Access

The root folder of the enclosed CD-ROM and the project homepage:
http://www.deepthought.dk/sidious/

both contain an all.html file. This file contains links to whatever generated
resource needed, and is provided to simplify browsing of the resources of the
project.

A.1 Source Code

The source code is available by the following means:

• On the enclosed CD-ROM, in the directory: src

• In its SVN repository at:
https://svn.mip.sdu.dk/master-mb/sidious/branches/thesis1

• As browseable HTML pages at:
http://www.deepthought.dk/sidious/html

The above copies of the source code will be mirrors of each other, and
will represent a frozen snapshot of the project as of: 1. May 2007.

1This repository requires username and password, which can be acquired by contacting
any of the authors.
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The snapshot will be branched off the trunk of the project, so that further
development can be made to the trunk, a.k.a. working copy, without disturb-
ing the delivered copy. (Section 7.2 outlines the structure of the repository.)

A.1.1 Working Copy

The working copy of the source code in the repository will not be frozen at
the designated time, and will be subject to change thereafter. The working
copy can be found at:

https://svn.mip.sdu.dk/master-mb/sidious/trunk

A.2 Documentation

The full Javadoc of project sidious is available by the following means:

• On the enclosed CD-ROM, in the directory: doc.

• On the project homepage at:
http://www.deepthought.dk/sidious/doc

The documentation will reflect the snapshot of the source code as de-
scribed in the previous section.

A.3 Test Results

All test results are available both on the enclosed CD-ROM and online on
the project homepage. The test folder contains an index.html file, which
lets you browse through all the tests.

A.3.1 Integration Test Results

The results of the integration tests are found in the PathfinderIntegrationTest.
This can be browsed to via the index.html page in the test folder as men-
tioned above. The generated plans can be seen by clicking the System.out-
link in the bottom right corner.
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A.4 Static Code Analysis

The results of the static code analysis tools executed upon the source code
of the project can be found in their respective folders, relative to the root
folder of both the CD-ROM and the project homepage. They are:

JDepend : /jdepend/report.html

JavaNCSS : /ncss/report.html

EMMA : /coverage/coverage.html

Again, it would be easier to browse to them via the all.html of the root
folder.
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Appendix B

External Libraries

The following accounts for the various external libraries used in
development of this project. It covers what the library was used for and
where to get it.

Ant the well known building tool for Java.
Can be found at: http://ant.apache.org/

JUnit is a testing framework for regression testing in Java.
It can be found at: http://www.junit.org/index.htm

Log4J is a logging package for Java.
Can be found at: http://logging.apache.org/log4j/docs/

JCIP Annotations is a annotation package for documenting
thread-safety policies. It can be found at:
http://www.javaconcurrencyinpractice.com/

CommonsLogging is a logging package that acts as a thin bridge
between different logging frameworks.
It can be found at: http://jakarta.apache.org/commons/logging/

Jakarta ORO is a set of regular expression classes for text processing.
The package is used by Commons Net.
Can be found at: http://jakarta.apache.org/oro/

Commons Net is an implementation of, among others, client side FTP
protocol. It is used by Ant to provide FTP capabilities.
It can be found at: http://jakarta.apache.org/commons/net/
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Java2HTML is a package for converting Java source files into browsable
HTML pages.
Can be found at: http://www.java2html.de/

JDepend is a tool for generating design quality metrics in Java.
It can be found at:
http://www.clarkware.com/software/JDepend.html

JavaNCSS is a suite for source measurements in Java.
It can be found at: http://www.kclee.de/clemens/java/javancss/

EMMA is a code coverage tool for Java.
It can be found at: http://emma.sourceforge.net/

CruiseControl is a framework for running continuous integration.
It can be found at: http://cruisecontrol.sourceforge.net/
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Larger Versions

C.1 Sequence Diagram of the Planner

This figure is the enlarged version of Figure 4.7 on page 38.
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Figure C.1: Sequence diagram of the planning
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